Skip to main content
Log in

Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Growth in hot climates selectively alters potato tuber secondary metabolism—such as the anthocyanins, carotenoids, and glycoalkaloids—changing its nutritive value and the composition of health-promoting components.

Abstract

Potato breeding for improved nutritional value focuses mainly on increasing the health-promoting carotenoids and anthocyanins, and controlling toxic steroidal glycoalkaloids (SGAs). Metabolite levels are genetically determined, but developmental, tissue-specific, and environmental cues affect their final content. Transcriptomic and metabolomic approaches were applied to monitor carotenoid, anthocyanin, and SGA metabolite levels and their biosynthetic genes’ expression under heat stress. The studied cultivars differed in tuber flesh carotenoid concentration and peel anthocyanin concentration. Gene expression studies showed heat-induced downregulation of specific genes for SGA, anthocyanin, and carotenoid biosynthesis. KEGG database mapping of the heat transcriptome indicated reduced gene expression for specific metabolic pathways rather than a global heat response. Targeted metabolomics indicated reduced SGA concentration, but anthocyanin pigments concentration remained unchanged, probably due to their stabilization in the vacuole. Total carotenoid level did not change significantly in potato tuber flesh, but their composition did. Results suggest that growth in hot climates selectively alters tuber secondary metabolism, changing its nutritive value and composition of health-promoting components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANS:

Anthocyanidin synthase

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

GAME:

Glycoalkaloid metabolism

SGA:

Steroidal glycoalkaloid

SGT:

Solanidine glucosyltransferase

ZEP:

Zeaxanthin epoxidase

References

  • Ahrazem O, Gómez-Gómez L, Rodrigo MJ, Avalos J, Limón MC (2016) Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions. Int J Mol Sci 17:1781. https://doi.org/10.3390/ijms17111781

    Article  CAS  PubMed Central  Google Scholar 

  • André CM, Schafleitner R, Legay S, Lefèvre I, Aliaga CAA, Nomberto G, Hoffmann L, Hausman J-F, Larondelle Y, Evers D (2009) Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry 70:1107–1116

    Article  CAS  PubMed  Google Scholar 

  • Arab L, Steck S (2000) Lycopene and cardiovascular disease. Am J Clin Nutr 71:1691–1695

    Article  Google Scholar 

  • Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321

    Article  CAS  PubMed  Google Scholar 

  • Barel G, Ginzberg I (2008) Potato skin proteome is enriched with plant defence components. J Exp Bot 59:3347–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejarano L, Mignolet E, Devaux A, Espinola N, Carrasco E, Larondelle Y (2000) Glycoalkaloids in potato tubers: the effect of variety and drought stress on the alpha-solanine and alpha-chaconine contents of potatoes. J Sci Food Agric 80:2096–2100

    Article  CAS  Google Scholar 

  • Beltran JCM, Stange C (2016) Apocarotenoids: a new carotenoid-derived pathway. In: Stange C (ed) Carotenoids in nature. Biosynthesis, regulation and function. Springer Int Publisher, Berlin, pp 239–272

    Chapter  Google Scholar 

  • Bergenstråhle A, Borga P, Jonsson MV (1996) Sterol composition and synthesis in potato tuber discs in relation to glycoalkaloid synthesis. Phytochemistry 41:155–161

    Article  Google Scholar 

  • Brown C, Kim T, Ganga Z, Haynes K, De Jong D, Jahn M, Paran I, De Jong W (2006) Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. Am J Potato Res 83:365–372

    Article  CAS  Google Scholar 

  • Burgos G, Salas E, Amoros W, Auqui M, Muñoa L, Kimura M, Bonierbale M (2009) Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. J Food Compos Anal 22:503–508

    Article  CAS  Google Scholar 

  • Camire ME, Kubow S, Donnelly DJ (2009) Potatoes and human health. Crit Rev Food Sci Nutr 49:823–840

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas PD, Sonawane PD, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S, Giri AP, Goossens A, Burdman S, Aharoni A (2016) GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Commun 7:10654

    Article  CAS  Google Scholar 

  • Castañeda-Ovando A, Pacheco-Hernández MdL, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  CAS  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Coria NA, Sarquís JI, Peñalosa I, Urzúa M (1998) Heat-induced damage in potato (Solanum tuberosum) tubers: membrane stability, tissue viability, and accumulation of glycoalkaloids. J Agr Food Chem 46:4524–4528

    Article  CAS  Google Scholar 

  • Dale MFB, Griffiths DW, Bain H, Todd D (1993) Glycoalkaloid increase in Solanum tuberosum on exposure to light. Ann Appl Biol 123:411–418

    Article  CAS  Google Scholar 

  • de Jong WS, Eannetta NT, Jong DM, Bodis M (2004) Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theor Appl Genet 108:423–432

    Article  CAS  PubMed  Google Scholar 

  • Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, Oren-Shamir M (2003) Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature conditions. Plant Sci 164:333–340

    Article  CAS  Google Scholar 

  • deVetten N, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Gene Dev 11:1422–1434

    Article  CAS  Google Scholar 

  • Dimenstein L, Lisker N, Kedar N, Levy D (1997) Changes in the content of steroidal glycoalkaloids in potato tubers grown in the field and in the greenhouse under different conditions of light, temperature and day length. Physiol Mol Plant Pathol 50:391–402

    Article  CAS  Google Scholar 

  • Fogelman E, Tanami S, Ginzberg I (2015) Anthocyanin synthesis in native and wound periderms of potato. Physiol Plant 153:616–626

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (2006) Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agr Food Chem 54:8655–8681

    Article  CAS  Google Scholar 

  • Friedman M, Dao L (1992) Distribution of glycoalkaloids in potato plants and commercial potato products. J Agric Food Chem 40:419–423

    Article  CAS  Google Scholar 

  • Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132

    Article  CAS  Google Scholar 

  • Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z, Muddarangappa T, de Jong W, Fogelman E (2009a) Transcriptomic profiling of heat-stress response in potato periderm. J Exp Bot 60:4411–4421

    Article  CAS  PubMed  Google Scholar 

  • Ginzberg I, Tokuhisa JG, Veilleux RE (2009b) Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. Potato Res 52:1–15

    Article  CAS  Google Scholar 

  • Ginzberg I, Thippeswamy M, Fogelman E, Demirel U, Mweetwa A, Tokuhisa J, Veilleux R (2012) Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase. Planta 235:1341–1353

    Article  CAS  PubMed  Google Scholar 

  • Heftmann E (1983) Biogenesis of steroids in Solanaceae. Phytochemistry 22:1843–1860

    Article  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  CAS  PubMed  Google Scholar 

  • Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri AP, Aharoni A (2013) Biosynthesis of antinutritional alkaloids in Solanaceous crops is mediated by clustered genes. Science 341:175–179

    Article  CAS  PubMed  Google Scholar 

  • Krauss A, Marschner H (1984) Growth rate and carbohydrate metabolism of potato tubers exposed to high temperatures. Potato Res 27:297–303

    Article  CAS  Google Scholar 

  • Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nut 23:171–201

    Article  CAS  Google Scholar 

  • Krits P, Fogelman E, Ginzberg I (2007) Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta 227:143–150

    Article  CAS  PubMed  Google Scholar 

  • Lafta AM, Lorenzen JH (2000) Influence of high temperature and reduced irradiance on glycoalkaloid levels in potato leaves. J Amer Soc Hort Sci 125:563–566

    Article  CAS  Google Scholar 

  • Lewis CE, Walker JRL, Lancaster JE (1999) Changes in anthocyanin, flavonoid and phenolic acid concentrations during development and storage of coloured potato (Solanum tuberosum L.) tubers. J Sci Food Agric 79:311–316

    Article  CAS  Google Scholar 

  • Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin-Wang KUI, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagnè D, Rowan DD, Troggio M, Iglesias I, Allan AC (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176–1190

    Article  CAS  PubMed  Google Scholar 

  • Markham KR, Ofman DJ (1993) Lisianthus flavonoid pigments and factors influencing their expression in flower colour. Phytochemistry 34:679–685

    Article  CAS  PubMed  Google Scholar 

  • McCue KF, Shepherd LVT, Allen PV, Maccree MM, Rockhold DR, Corsini DL, Davies HV, Belknap WR (2005) Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Sci 168:267–273

    Article  CAS  Google Scholar 

  • McCue KF, Allen PV, Shepherd LVT, Blake A, Maccree MM, Rockhold DR, Novy RG, Stewart D, Davies HV, Belknap WR (2007) Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68:327–334

    Article  CAS  PubMed  Google Scholar 

  • Moehs CP, Allen PV, Friedman M, Belknap WR (1997) Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11:227–236

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945

    Article  CAS  PubMed  Google Scholar 

  • Morris SC, Petermann JB (1985) Genetic and environmental effects on levels of glycoalkaloids in cultivars of potato (Solanum tuberosum L.). Food Chem 18:271–282

    Article  CAS  Google Scholar 

  • Morris WL, Ducreux L, Griffiths DW, Stewart D, Davies HV, Taylor MA (2004) Carotenogenesis during tuber development and storage in potato. J Exp Bot 55:975–982

    Article  CAS  PubMed  Google Scholar 

  • Neuman H, Galpaz N, Cunningham FX, Zamir D, Hirschberg J (2014) The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. Plant J 78:80–93

    Article  CAS  PubMed  Google Scholar 

  • Noda K-I, Glover BJ, Linstead P, Martin C (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369:661–664

    Article  CAS  PubMed  Google Scholar 

  • Ohyama K, Okawa A, Moriuchi Y, Fujimoto Y (2013) Biosynthesis of steroidal alkaloids in Solanaceae plants: involvement of an aldehyde intermediate during C-26 amination. Phytochemistry 89:26–31

    Article  CAS  PubMed  Google Scholar 

  • Oren-Shamir M (2009) Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Sci 177:310–316

    Article  CAS  Google Scholar 

  • Pankratov I, McQuinn R, Schwartz J, Bar E, Fei Z, Lewinsohn E, Zamir D, Giovannoni JJ, Hirschberg J (2016) Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis. Plant J 88:82–94

    Article  CAS  PubMed  Google Scholar 

  • Percival G, Dixon G, Sword A (1994) Glycoalkaloid concentration of potato tubers following continuous illumination. J Sci Food Agric 66:139–144

    Article  CAS  Google Scholar 

  • Petersson EV, Arif U, Schulzova V, Krtková V, Hajšlová J, Meijer J, Andersson HC, Jonsson L, Sitbon F (2013a) Glycoalkaloid and calystegine levels in table potato cultivars subjected to wounding, light, and heat treatments. J Agric Food Chem 61:5893–5902

    Article  CAS  PubMed  Google Scholar 

  • Petersson EV, Nahar N, Dahlin P, Broberg A, Tröger R, Dutta PC, Jonsson L, Sitbon F (2013b) Conversion of exogenous cholesterol into glycoalkaloids in potato shoots, using two methods for sterol solubilisation. PLoS One 8(12):e82955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quattrocchio F, Wing JF, van der Woude K, Mol JNM, Koes R (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 13:475–488

    Article  CAS  PubMed  Google Scholar 

  • Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaked-Sachray L, Weiss D, Reuveni M, Nissim-Levi A, Oren-Shamir M (2002) Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment. Physiol Plant 114:559–565

    Article  CAS  PubMed  Google Scholar 

  • Shvarts M, Borochov A, Weiss D (1997) Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression. Physiol Plant 99:67–72

    Article  CAS  Google Scholar 

  • Smith DB, Roddick JG, Jones JL (1996) Potato glycoalkaloids: some unanswered questions. Trends Food Sci Tech 7:126–131

    Article  CAS  Google Scholar 

  • Struik P, Geertsema J, Custers C (1989a) Effects of shoot, root and stolon temperature on the development of the potato (Solanum tuberosum L.) plant. I. Development of the haulm. Potato Res 32:133–141

    Article  Google Scholar 

  • Struik P, Geertsema J, Custers C (1989b) Effects of shoot, root and stolon temperature on the development of the potato (Solanum tuberosum L.) plant. II. Development of stolons. Potato Res 32:143–149

    Article  Google Scholar 

  • Struik P, Geertsema J, Custers C (1989c) Effects of shoot, root and stolon temperature on the development of the potato (Solanum tuberosum L.) plant. III. Development of tubers. Potato Res 32:151–158

    Article  Google Scholar 

  • Stushnoff C, Ducreux LJM, Hancock RD, Hedley PE, Holm DG, McDougall GJ, McNicol JW, Morris J, Morris WL, Sungurtas JA, Verrall SR, Zuber T, Taylor MA (2010) Flavonoid profiling and transcriptome analysis reveals new gene-metabolite correlations in tubers of Solanum tuberosum L. J Exp Bot 61:1225–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulli M, Mandolino G, Sturaro M, Onofri C, Diretto G, Parisi B, Giuliano G (2017) Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS One 12:e0184143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulitsky I, Maron-Katz A, Shavit S, Sagir D, Linhart C, Elkon R, Tanay A, Sharan R, Shiloh Y, Shamir R (2010) Expander: from expression microarrays to networks and functions. Nat Protoc 5:303

    Article  CAS  PubMed  Google Scholar 

  • Vaknin H, Bar-Akiva A, Ovadia R, Nissim-Levi A, Forer I, Weiss D, Oren-Shamir M (2005) Active anthocyanin degradation in Brunfelsia calycina (yesterday–today–tomorrow) flowers. Planta 222:19–26

    Article  CAS  PubMed  Google Scholar 

  • Valkonen JPT, Keskitalo M, Vasara T, Pietila L (1996) Potato glycoalkaloids: a burden or a blessing? Cri Rev Plant Sci 15:1–20

    Article  CAS  Google Scholar 

  • Van Eck HJ, Jacobs JME, Vandenberg PMMM, Stiekema WJ, Jacobsen E (1994) The inheritance of anthocyanin pigmentation in potato (Solanum tuberosum L.) and mapping of tuber skin color loci using RFLPs. Heredity 73:410–421

    Article  CAS  Google Scholar 

  • Verweij W, Spelt C, Di Sansebastiano G-P, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H + P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10:1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Villavicencio LE, Blankenship SM, Yencho GC, Thomas JF, Raper CD (2007) Temperature effect on skin adhesion, cell wall enzyme activity, lignin content, anthocyanins, growth parameters, and periderm histochemistry of sweetpotato. J Am Soc Hortic Sci 132:729–738

    Article  CAS  Google Scholar 

  • Wei Q, Wang Q-Y, Feng Z-H, Wang B, Zhang Y-F, Yang Q (2012) Increased accumulation of anthocyanins in transgenic potato tubers by overexpressing the 3GT gene. Plant Biotechnol Rep 6:69–75

    Article  Google Scholar 

  • Wolters A-MA, Uitdewilligen JGAML, Kloosterman BA, Hutten RCB, Visser RGF, van Eck HJ (2010) Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Mol Biol 73:659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi M, Timm H, Spurr A (1964) Effects of soil temperature on growth and nutrition of potato plants and tuberization, composition, and periderm structure of tubers. Proc Amer Soc Hort Sci 84:412–423

    CAS  Google Scholar 

  • Zhou X, McQuinn R, Fei Z, Wolters A-MA, Van Eck J, Brown C, Giovannoni JJ, Li LI (2011) Regulatory control of high levels of carotenoid accumulation in potato tubers. Plant Cell Environ 34:1020–1030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chief Scientist of the Ministry of Agriculture and Rural Development—Italian-Israel NUTRISOL project (261-0929-14), and is a contribution of the ARO, the Volcani Center, Israel. Authors would like to thank Dr. Mira Weisberg for the SGA metabolite analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idit Ginzberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1479 kb)

Supplementary material 2 (PDF 175 kb)

Table S2

List of genes identified in the phelloderm and tuber flesh transcriptomes including EdgeR analysis of their differential expression (XLSX 6636 kb)

Table S3

Cluster and GO analyses of phelloderm and tuber flesh genes whose expression was modified by the heat treatment (XLSX 174 kb)

Supplementary material 5 (XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fogelman, E., Oren-Shamir, M., Hirschberg, J. et al. Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids. Planta 249, 1143–1155 (2019). https://doi.org/10.1007/s00425-018-03078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-03078-y

Keywords

Navigation