Skip to main content
Log in

Oryza sativa salt-induced RING E3 ligase 2 (OsSIRP2) acts as a positive regulator of transketolase in plant response to salinity and osmotic stress

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A rice gene (OsSIRP2) encoding the RING Ub E3 ligase was highly induced under salinity stress and physically interacted with a transketolase (OsTKL1). Overexpression of OsSIRP2 conferred salinity and osmotic stress tolerance in plants.

The RING E3 ligases play a vital role in post transitional modification through ubiquitination-mediated protein degradation that mediate plants responses during abiotic stresses and signal transduction. In this study, we report an Oryza sativa salt induced Really Interesting New Gene (RING) finger protein 2 gene (OsSIRP2) and elucidate its role under salinity and osmotic stress. The transcript levels of OsSIRP2 in rice leaves were induced in response to different abiotic stresses, such as salt, drought, heat, and abscisic acid (ABA) exposure. In vitro ubiquitination revealed that the OsSIRP2 protein formed poly-ubiquitin products, whereas a single amino acid substitution in OsSIRP2 (OsSIRP2C149A) in the RING domain did not form ubiquitinated substrates, supporting the hypothesis that E3 ligase activity requires the functional RING domain. Using the yeast two-hybrid (Y2H) assay, O. sativa transketolase 1 (OsTKL1) was identified as an interacting partner. OsSIRP2 was localized in the nucleus, whereas its interacting partner (OsTKL1) was localized in the cytosol and plastids in the rice protoplasts. Fluorescence signals between OsSIRP2 and OsTKL1 were observed in the cytosol. The pull-down assay confirmed the physical interaction between OsSIRP2 and OsTKL1. In vitro ubiquitination assay and in vitro protein degradation assay revealed that OsSIRP2 ubiquitinates OsTKL1 and enhances the degradation of OsTKL1 through the 26S proteasomal pathway. Heterogeneous overexpression of OsSIRP2 resulted in conferring tolerance against salinity and osmotic stress. Overall, our findings suggest that OsSIRP2 may be associated with plant responses to abiotic stresses and act as a positive regulator of salt and osmotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BiFC:

Bimolecular fluorescence complementation

OsSIRP2 :

Oryza sativa salt induced Ring finger protein 2

RING:

Really Interesting New Gene

Y2H:

Yeast two-hybrid

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Chen W, Feng C, Guo W, Shi D, Yang C (2011) Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis, and osmotic adjustment in cotton plants. Photosynthetica 49:417–425

    Article  CAS  Google Scholar 

  • Chen M, Zhao Y, Zhuo C, Lu S, Guo Z (2015) Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnol J 13:482–491

    Article  CAS  PubMed  Google Scholar 

  • Cho HY, Lee C, Hwang SG, Park YC, Lim HL, Jang CS (2014) Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis. Gene 552:98–105

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ (2005) Floral dip: Agrobacterium-mediated germ line transformation. Methods Mol Biol 286:91–102

    CAS  PubMed  Google Scholar 

  • Conde A, Chaves MM, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz RP, Sperotto RA, Cargnelutti D, Adamski JM, Terra TF, Fett JP (2013) Avoiding damage and achieving cold tolerance in rice plants. Food Energ Secur 2:96–119

    Article  Google Scholar 

  • Dashaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  Google Scholar 

  • Flechner A, Dressen U, Westhoff P, Henze K, Schnarrenberger C, Martin W (1996) Molecular characterization of transketolase (EC 2.2.1.1) active in the Calvin cycle of spinach chloroplasts. Plant Mol Biol 32:475–484

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64:483–484

    Article  CAS  PubMed  Google Scholar 

  • Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13:535–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herhko A, Ciechanover A, Varshavsky A (2000) The ubiquitin system. Nat Med 10:1073–1081

    Article  Google Scholar 

  • Hu WH, Hu GC, Han B (2009) Genome wide survey and expression during profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176:583–590

    Article  CAS  PubMed  Google Scholar 

  • Hwang SG, Kim JJ, Lim SD, Park YC, Moon JC, Jang CS (2016) Molecular dissection of Oryza sativa salt-induced RING Finger Protein 1 (OsSIRP1): possible involvement in the sensitivity response to salinity stress. Physiol Plant 158:168–179

    Article  CAS  PubMed  Google Scholar 

  • Hwang SG, Chapagain S, Han AR, Park YC, Park HM, Kim YH, Jang CS (2017) Molecular characterization of rice arsenic-induced RING Finger E3 ligase 2 (OsAIR2) and its heterogeneous overexpression in Arabidopsis thalaiana. Physiol Plant 161:372–384

    Article  CAS  PubMed  Google Scholar 

  • Jacobson AD, Zhang NY, Xu P, Han KJ, Noone S, Peng J, Liu CW (2009) The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J Biol Chem 284:35485–35494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser W (1976) The effect of hydrogen peroxide on CO2 fixation of isolated intact chloroplasts. Biochim Biophys Acta 440:476–482

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Sharma A, Guruprasad K, Pati PK (2014) Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 32:551–563

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim IS, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539

    Article  CAS  PubMed  Google Scholar 

  • Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  • Li J, Han Y, Zhao Q, Li C, Xie Q, Chong K, Xu Y (2013) The E3 ligase AtRDUF1 positively regulates salt stress response in Arabidopsis thaliana. PLoS One 8:e71078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013a) The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64:2899–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SD, Lee CH, Jang CS (2013b) The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis. Plant Cell Environ 37:1097–1113

    Article  PubMed  Google Scholar 

  • Lim SD, Hwang JG, Han AR, Park YC, Lee C, Ok YS, Jang CS (2014) Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes. Plant Mol Biol 85:365–379

    Article  CAS  PubMed  Google Scholar 

  • Lim SD, Hwang JG, Han AR, Park YC, Lee C, Lim CW, Kim DS, Jang CS (2015) Molecular dissection of a rice microtubule—associated RING finger protein and its potential role in salt tolerance in Arabidopsis. Plant Mol Biol 89:365–384

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lyzenga WJ, Stone SL (2012) Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 63:599–616

    Article  CAS  PubMed  Google Scholar 

  • Maas EV, Hoffmann GJ (1977) Crop salt tolerance—current assessment. J Irrig Drain Div ASCE 103:115–134

    Google Scholar 

  • Mazzucotelli E, Belloni S, Marone D, De Leonardis AM, Guerra D, Di Fonzo N, Cattivelli L, Mastrangelo AM (2006) The E3 ubiquitin ligase gene family in plants: regulation by degradation. Curr Genomics 7:509–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Kumar MS (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537

    PubMed  PubMed Central  Google Scholar 

  • Park S, Moon JC, Park YC, Kim JH, Kim DS, Jang CS (2014) Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses. J Plant Physiol 171:1645–1653

    Article  CAS  PubMed  Google Scholar 

  • Park YC, Kim JJ, Kim DS, Jang CS (2015) Rice RING E3 ligase may negatively regulate gamma-ray response to mediate the degradation of photosynthesis-related proteins. Planta 241:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Qi S, Lin Q, Zhu H, Gao F, Zhang W, Hua X (2016) The RING finger E3 ligase SpRing is a positive regulator of salt stress signaling in salt-tolerant wild tomato species. Plant Cell Physiol. 57(3):528–539. https://doi.org/10.1093/pcp/pcw006

    Article  CAS  PubMed  Google Scholar 

  • Rajeendran A, Nulit R, Kalhori N, Yien CS (2013) Isolation, cloning, and subcellular localization of transketolase from Amaranthus tricolor L. J Biol 1:92–99

    CAS  Google Scholar 

  • Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot 59:4133–4143

    Article  CAS  PubMed  Google Scholar 

  • Ryu MY, Cho SK, Kim WK (2010) The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol 154:1983–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulman BA, Harper JW (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signaling pathways. Nat Rev Mol Cell Biol 10:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  Google Scholar 

  • Srivastava AK, Srivastava S, Lokhande HV, Souza SFD, Suprasanna P (2015) Salt stress reveals differential antioxidant and energetic responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.). Front. Environ Sci 3:19

    Google Scholar 

  • Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takabe T, Asami S, Akazawa T (1980) Glycolate formation catalyzed by spinach leaf transketolase utilizing the superoxide radical. Biochemistry 19:3985–3989

    Article  CAS  PubMed  Google Scholar 

  • Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151:421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    Article  CAS  PubMed  Google Scholar 

  • Willige BC, Kutzer M, Tebartz F, Bartels D (2009) Subcellular localization and enzymatic properties of differentially expressed transketolase genes isolated from the desiccation tolerant resurrection plant Craterostigma plantagineum. Planta 222:659–666

    Article  Google Scholar 

  • Zhang YY, Yang CW, Li Y, Zheng NY, Chen H, Zhao QZ, Gao T, Guo HS, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Cui F, Wu Y, Lou L, Liu L, Tian M, Ning Y, Shu K, Tang S, Xie Q (2015) The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-interacting protein1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell 27:214–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2016R1A2B4015626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Seong Jang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 660 kb)

Supplementary material 2 (PPTX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapagain, S., Park, Y.C., Kim, J. et al. Oryza sativa salt-induced RING E3 ligase 2 (OsSIRP2) acts as a positive regulator of transketolase in plant response to salinity and osmotic stress. Planta 247, 925–939 (2018). https://doi.org/10.1007/s00425-017-2838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2838-x

Keywords

Navigation