Planta

, Volume 247, Issue 3, pp 543–557 | Cite as

Trends in plant research using molecular markers

  • Jose Antonio Garrido-Cardenas
  • Concepción Mesa-Valle
  • Francisco Manzano-Agugliaro
Review

Abstract

Main conclusion

A deep bibliometric analysis has been carried out, obtaining valuable parameters that facilitate the understanding around the research in plant using molecular markers.

The evolution of the improvement in the field of agronomy is fundamental for its adaptation to the new exigencies that the current world context raises. In addition, within these improvements, this article focuses on those related to the biotechnology sector. More specifically, the use of DNA markers that allow the researcher to know the set of genes associated with a particular quantitative trait or QTL. The use of molecular markers is widely extended, including: restriction fragment length polymorphism, random-amplified polymorphic DNA, amplified fragment length polymorphism, microsatellites, and single-nucleotide polymorphisms. In addition to classical methodology, new approaches based on the next generation sequencing are proving to be fundamental. In this article, a historical review of the molecular markers traditionally used in plants, since its birth and how the new molecular tools facilitate the work of plant breeders is carried out. The evolution of the most studied cultures from the point of view of molecular markers is also reviewed and other parameters whose prior knowledge can facilitate the approach of researchers to this field of research are analyzed. The bibliometric analysis of molecular markers in plants shows that top five countries in this research are: US, China, India, France, and Germany, and from 2013, this research is led by China. On the other hand, the basic research using Arabidopsis is deeper in France and Germany, while other countries focused its efforts in their main crops as the US for wheat or maize, while China and India for wheat and rice.

Keywords

AFLP QTL RAPD RFLP SNP Microsatellite 

Abbreviations

AFLP

Amplified fragment length polymorphism

NGS

Next generation sequencing

PCR

Polymerase chain reaction

QTL

Quantitative trait loci

RAPD

Random amplification of polymorphic DNA

RFLP

Restriction fragment length polymorphism

SNP

Single-nucleotide polymorphisms

SSR

Simple sequence repeats

STR

Short tandem repeats

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adal AM, Demissie ZA, Mahmoud SS (2015) Identification, validation and cross-species transferability of novel Lavandula EST-SSRs. Planta 241:987–1004.  https://doi.org/10.1007/s00425-014-2226-8 CrossRefPubMedGoogle Scholar
  2. Archambault É, Campbell D, Gingras Y, Larivière V (2009) Comparing bibliometric statistics obtained from the Web of Science and Scopus. J Am Soc Inf Sci Technol 60:1320–1326.  https://doi.org/10.1002/asi.21062 CrossRefGoogle Scholar
  3. Bardakci F (2001) Random amplified polymorphic DNA (RAPD) markers. Turk J Biol 25:185–196Google Scholar
  4. Bohra A, Pandey MK, Jha UC et al (2014) Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291CrossRefPubMedPubMedCentralGoogle Scholar
  5. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890.  https://doi.org/10.1093/bioinformatics/btg112 CrossRefPubMedGoogle Scholar
  6. Chung SM, Staub JE (2003) The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Theor Appl Genet 107:757–767.  https://doi.org/10.1007/s00122-003-1311-3 CrossRefPubMedGoogle Scholar
  7. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572.  https://doi.org/10.1098/rstb.2007.2170 CrossRefPubMedGoogle Scholar
  8. Choi J, Yi S, Lee KC (2011) Analysis of keyword networks in MIS research and implications for predicting knowledge evolution. Inf Manag 48:371–381.  https://doi.org/10.1016/j.im.2011.09.004 CrossRefGoogle Scholar
  9. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  10. Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510.  https://doi.org/10.1038/nrg3012 CrossRefPubMedGoogle Scholar
  11. Eathington SR, Crosbie TM, Edwards MD et al (2007) Molecular markers in a commercial breeding program. Crop Sci 47.  https://doi.org/10.2135/cropsci2007.04.0015IPBS
  12. Eckert AJ, Pande B, Ersoz ES et al (2009) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes 5:225–234.  https://doi.org/10.1007/s11295-008-0183-8 CrossRefGoogle Scholar
  13. Evans LT (1997) Adapting and improving crops: the endless task. Philos Trans R Soc Lond Ser B Biol Sci 352:901–906.  https://doi.org/10.1098/rstb.1997.0069 CrossRefGoogle Scholar
  14. Fábregas-Ruesgas JJ, Hernández-Abad F, Hernández-Abad V, Rojas-Sola JI (2015) Comparative analysis of a university learning experience: classroom mode versus distance mode. Int J Interact Des Manuf 9:145–157.  https://doi.org/10.1007/s12008-014-0205-8 CrossRefGoogle Scholar
  15. Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217CrossRefPubMedGoogle Scholar
  16. Ganal MW, Polley A, Graner EM et al (2012) Large SNP arrays for genotyping in crop plants. J Biosci 37:821–828.  https://doi.org/10.1007/s12038-012-9225-3 CrossRefPubMedGoogle Scholar
  17. Garrido-Cardenas JA, Manzano-Agugliaro F (2017) The metagenomics worldwide research. Curr Genet.  https://doi.org/10.1007/s00294-017-0693-8 PubMedGoogle Scholar
  18. Garrido-Cardenas JA, Garcia-Maroto F, Alvarez-Bermejo JA, Manzano-Agugliaro F (2017) DNA sequencing sensors: an overview. Sensors (Basel) 17(3):1–15.  https://doi.org/10.3390/s17030588 CrossRefGoogle Scholar
  19. Gimenez E, Manzano-Agugliaro F (2017) DNA damage repair system in plants: a worldwide research update. Genes (Basel) 8:299.  https://doi.org/10.3390/genes8110299 CrossRefGoogle Scholar
  20. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351.  https://doi.org/10.1038/nrg.2016.49 CrossRefPubMedGoogle Scholar
  21. Grover A, Sharma PC (2016) Development and use of molecular markers: past and present. Crit Rev Biotechnol 36:290–302.  https://doi.org/10.3109/07388551.2014.959891 CrossRefPubMedGoogle Scholar
  22. Gunderson KL, Steemers FJ, Lee G et al (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549–554.  https://doi.org/10.1038/ng1547 CrossRefPubMedGoogle Scholar
  23. Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210:1518–1525.  https://doi.org/10.1242/jeb.001370 CrossRefPubMedGoogle Scholar
  24. Hamada H, Kakunaga T (1982) Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298:396–398.  https://doi.org/10.1038/298396a0 CrossRefPubMedGoogle Scholar
  25. Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153.  https://doi.org/10.1146/annurev.bioeng.4.020702.153438 CrossRefPubMedGoogle Scholar
  26. Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet.  https://doi.org/10.1007/s00122-015-2509-x PubMedGoogle Scholar
  27. Janssen P, Coopman R, Huys G et al (1996) Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142:1881–1893.  https://doi.org/10.1007/s00296-011-2085-6 CrossRefPubMedGoogle Scholar
  28. Kerr MK, Martin M, Churchill GA (2000) Analysis of variance for gene expression microarray data. J Comput Biol 7:819–837.  https://doi.org/10.1089/10665270050514954 CrossRefPubMedGoogle Scholar
  29. Kim JJ, Han BG, Lee HI et al (2010) Development of SNP-based human identification system. Int J Legal Med 124:125–131.  https://doi.org/10.1007/s00414-009-0389-9 CrossRefPubMedGoogle Scholar
  30. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921.  https://doi.org/10.1111/j.1365-313X.2009.04086.x CrossRefPubMedGoogle Scholar
  31. Kumar LS (1999) DNA markers in plant improvement: an overview. Biotechnol Adv 17:143–182CrossRefPubMedGoogle Scholar
  32. Lander ES, Botstein S (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185.  https://doi.org/10.1038/hdy.2014.4 PubMedPubMedCentralGoogle Scholar
  33. Landjeva S, Korzun V, Börner A (2007) Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica 156:271–296CrossRefGoogle Scholar
  34. Lateef DD (2015) DNA marker technologies in plants and applications for crop improvements. J Biosci Med 3:7–18.  https://doi.org/10.4236/jbm.2015.35002 Google Scholar
  35. Lucht JM (2015) Public acceptance of plant biotechnology and GM crops. Viruses 7:4254–4281CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mackill DJ, Nguyen HT, Zhang J (1999) Use of molecular markers in plant improvement programs for rainfed lowland rice. Field Crop Res 64:177–185.  https://doi.org/10.1016/S0378-4290(99)00058-1 CrossRefGoogle Scholar
  37. Mateo-Bonmatí E, Casanova-Sáez R, Candela H, Micol JL (2014) Rapid identification of angulata leaf mutations using next-generation sequencing. Planta 240:1113–1122.  https://doi.org/10.1007/s00425-014-2137-8 CrossRefPubMedGoogle Scholar
  38. Mongeon P, Paul-Hus A (2016) The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 106:213–228.  https://doi.org/10.1007/s11192-015-1765-5 CrossRefGoogle Scholar
  39. Montoya FG, Montoya MG, Gómez J et al (2014) The research on energy in Spain: a scientometric approach. Renew Sustain Energy Rev 29:173–183CrossRefGoogle Scholar
  40. Montoya FG, Alcayde A, Baños R, Manzano-agugliaro F (2017) Telematics and informatics a fast method for identifying worldwide scientific collaborations using the Scopus database. Telemat Inf.  https://doi.org/10.1016/j.tele.2017.10.010 Google Scholar
  41. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394.  https://doi.org/10.1016/S0169-5347(99)01659-6 CrossRefPubMedGoogle Scholar
  42. Neves LG, Mc Mamani E, Alfenas AC et al (2011) A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based single feature polymorphisms (SFP) in eucalyptus. BMC Genomics 12:189.  https://doi.org/10.1186/1471-2164-12-189 CrossRefPubMedPubMedCentralGoogle Scholar
  43. O’Hanlon PC, Peakall R, Briese DT (2000) A review of new PCR-based genetic markers and their utility to weed ecology. Weed Res 40:239–254CrossRefGoogle Scholar
  44. Ortiz R (2010) Molecular plant breeding. Crop Sci 50:2196–2197.  https://doi.org/10.2135/cropsci2010.12.0004br CrossRefGoogle Scholar
  45. Pacheco-Marín R, Melendez-Zajgla J, Castillo-Rojas G et al (2016) Transcriptome profile of the early stages of breast cancer tumoral spheroids. Sci Rep 6:23373.  https://doi.org/10.1038/srep23373 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pérez-de-Castro AM, Vilanova S, Cañizares J et al (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195.  https://doi.org/10.2174/138920212800543084 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147CrossRefPubMedGoogle Scholar
  48. Rasheed A, Hao Y, Xia X et al (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064CrossRefPubMedGoogle Scholar
  49. Reynolds MP, Rodomiro O (2010) Adapting crops to climate change: a summary. Clim Chang Crop Prod 51:1–8.  https://doi.org/10.1079/9781845936334.0000 Google Scholar
  50. Salmerón-Manzano E, Manzano-Agugliaro F (2017) Worldwide scientific production indexed by Scopus on labour relations. Publications 5:25.  https://doi.org/10.3390/publications5040025 CrossRefGoogle Scholar
  51. Sasaki T, Burr B (2000) International rice genome sequencing project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3:138–141CrossRefPubMedGoogle Scholar
  52. Singh V, Perdigones A, García JL et al (2014) Analysis of worldwide research in the field of cybernetics during 1997–2011. Biol Cybern 108:757–776.  https://doi.org/10.1007/s00422-014-0617-3 CrossRefPubMedGoogle Scholar
  53. Slonim DK, Yanai I (2009) Getting started in gene expression microarray analysis. PLoS Comput, Biol, p 5Google Scholar
  54. Suwarno WB, Pixley KV, Palacios-Rojas N et al (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864.  https://doi.org/10.1007/s00122-015-2475-3 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science (80) 327:818–822.  https://doi.org/10.1126/science.1183700 CrossRefGoogle Scholar
  56. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641.  https://doi.org/10.1038/nature11119 CrossRefGoogle Scholar
  57. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55CrossRefPubMedGoogle Scholar
  58. Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414.  https://doi.org/10.1093/nar/23.21.4407 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vuylsteke M, Peleman JD, van Eijk MJT (2007) AFLP technology for DNA fingerprinting. Nat Protoc 2:1387–1398.  https://doi.org/10.1038/nprot.2007.175 CrossRefPubMedGoogle Scholar
  60. Wang Y, Xu J, Deng D et al (2016) A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta 243:459–471.  https://doi.org/10.1007/s00425-015-2419-9 CrossRefPubMedGoogle Scholar
  61. Williams RC (1989) Restriction fragment length polymorphism (RFLP). Am J Phys Anthropol 32:159–184.  https://doi.org/10.1002/ajpa.1330320508 CrossRefGoogle Scholar
  62. Williams JGK, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535.  https://doi.org/10.1093/nar/18.22.6531 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Xiong J-S, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019.  https://doi.org/10.1038/hortres.2015.19 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yan J, Yang X, Shah T et al (2010) High-throughput SNP genotyping with the Goldengate assay in maize. Mol Breed 25:441–451.  https://doi.org/10.1007/s11032-009-9343-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Biology and GeologyUniversity of AlmeriaAlmeriaSpain
  2. 2.Department of EngineeringUniversity of AlmeriaAlmeriaSpain

Personalised recommendations