, Volume 247, Issue 3, pp 649–661 | Cite as

Mannans and endo-β-mannanase transcripts are located in different seed compartments during Brassicaceae germination

  • Néstor Carrillo-Barral
  • Angel J. Matilla
  • María del Carmen Rodríguez-Gacio
  • Raquel Iglesias-Fernández
Original Article


Main conclusion

Mannans but not endo-β-mannanases are mainly found in the mucilage layer of two Brassicaceae seeds. Nonetheless, mannanase mobilization from inner to outer seed layers cannot be ruled out.

The contribution of endo-β-mannanase (MAN) genes to the germination of the wild-type Sisymbrium officinale and cultivated Brassica rapa (Brassicaceae) species has been explored. In both species, mannans have been localized to the imbibed external seed coat layer (mucilage) by fluorescence immunolocalization and MAN enzymatic activity increases in seeds as imbibition progresses, reaching a peak before 100% germination is achieved. The MAN gene families have been annotated and the expression of their members analyzed in vegetative and reproductive organs. In S. officinale and B. rapa, MAN2, MAN5, MAN6, and MAN7 transcripts accumulate upon seed imbibition. SoMAN7 is the most expressed MAN gene in S. officinale germinating seeds, as occurs with its ortholog in Arabidopsis thaliana, but in B. rapa, the most abundant transcripts are BrMAN2 and BrMAN5. These genes (MAN2, MAN5, MAN6, and MAN7) are localized, by mRNA in situ hybridization, to the micropylar at the endosperm layer and to the radicle in S. officinale, but in B. rapa, these mRNAs are faintly found to the micropylar living seed coat layer and are mainly present at the radicle tip and the vascular bundles. If the domestication process undergone by B. rapa is responsible for these different MAN expression patterns, upon germination remains to be elucidated. Since mannans and MAN genes are not spatially distributed in the same seed tissues, a movement of MAN enzymes that are synthesized with typical signal peptides from the embryo tissues to the mucilage layer (via apoplastic space) is necessary for the mannans to be hydrolyzed.


Brassica rapa Endo-β-mannanase Germination Mannans Mucilage Seed Sisymbrium officinale 



Cell wall modifying enzymes


Living seed coat layer





We thank Prof. P. Carbonero (Universidad Politécnica de Madrid, Centro de Biotecnología y Genómica de Plantas, Madrid, Spain) for critical reading of the manuscript. Financial support was granted by Ministerio de Ciencia e Innovación (CGL2009-11425; MICINN, Spain).

Supplementary material

425_2017_2815_MOESM1_ESM.tif (33.7 mb)
Fig. S1 Transcription levels (Ct values) of the housekeeping SoACT8 and BrACT8 during seed germination (a and d), silique development (b and e) and in different organs (c and f) of S. officinale and B. rapa (TIFF 34544 kb)
425_2017_2815_MOESM2_ESM.tif (31.4 mb)
Fig. S2 a Expression analysis by RT-qPCR of SoMAN2, SoMAN5, SoMAN6, and SoMAN7 in several plant organs of S. officinale. b Transcript abundance of BrMAN2, BrMAN5, BrMAN6, and BrMAN7 in different plant organs of B. rapa. Data are means ± SE of two technical replicates of three biological samples (TIFF 32187 kb)
425_2017_2815_MOESM3_ESM.tif (7 mb)
Table S1 Sequences of primers used (TIFF 7137 kb)
425_2017_2815_MOESM4_ESM.tif (9.4 mb)
Table S2 Major characteristics of the endo-β-mannanase proteins analyzed in S. officinale and B. rapa. Those that are important in the germination of Arabidopsis thaliana seeds are also included (Iglesias-Fernández et al. 2011a) (TIFF 9586 kb)


  1. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motifs discovery and searching. Nucleic Acids Res 37:W202–W208CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer Science +Business Media, New York, pp 133–181CrossRefGoogle Scholar
  4. Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nature Genet 43:1035–1039CrossRefGoogle Scholar
  5. Buckeridge MS (2010) Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol 154:1017–1023CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carrillo-Barral N, Matilla AJ, Iglesias-Fernández R, Rodríguez-Gacio MC (2013) Nitrate-induced early transcriptional changes during imbibition in non-afterripened Sisymbrium officinale seeds. Physiol Plant 148:560–573CrossRefPubMedGoogle Scholar
  7. Carrillo-Barral N, Iglesias-Fernández R, Matilla AJ, Rodríguez-Gacio MC (2014) Nitrate modifies gene expression involved in the abscisic acid and gibberellin biosynthesis and signalling during sensu stricto germination of after-ripened Sisymbrium officinale seeds. Plant Sci 217:99–108CrossRefPubMedGoogle Scholar
  8. Chan AC, Khan D, Girard IJ, Becker MG, Millar JL, Sytnik D, Belmonte MF (2016) Tissue-specific laser microdissection of the Brassica napus funiculus improves gene discovery and spatial identification of biological processes. J Exp Bot 67:3561–3571CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67:463–476CrossRefPubMedGoogle Scholar
  10. Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366CrossRefPubMedGoogle Scholar
  11. Domínguez F, Cejudo FJ (2014) Programmed cell death (PCD): an essential process of cereal seed development and germination. Front Plant Sci 5:366PubMedPubMedCentralGoogle Scholar
  12. Gong X, Bassel GW, Wang A, Greenwood JS, Bewley JD (2005) The emergence of embryos from hard seeds is related to the structure of the cell walls of the micropylar endosperm, and not to endo-beta-mannanase activity. Ann Bot 96:1165–1173CrossRefPubMedPubMedCentralGoogle Scholar
  13. González-Calle V, Barrero-Sicilia C, Carbonero P, Iglesias-Fernández R (2015) Mannans and endo-β-mannanases (MAN) in Brachypodium distachyon: expression profiling and possible role of the BdMAN genes during coleorhiza-limited seed germination. J Exp Bot 66:3753–3764CrossRefPubMedPubMedCentralGoogle Scholar
  14. Goodstein DM, Shu S, Howson R, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparartive platform for Green plant genomics. Nucleic Acids Res 40:D1178–D1186CrossRefPubMedGoogle Scholar
  15. Graeber K, Linkies A, Wood AT, Leubner-Metzger G (2011) A guide line to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell 23:2045–2063CrossRefPubMedPubMedCentralGoogle Scholar
  16. Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54CrossRefPubMedGoogle Scholar
  17. Iglesias-Fernández R, Matilla AJ (2010) Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of Sisymbrium officinale L. seeds. Planta 231:653–664CrossRefPubMedGoogle Scholar
  18. Iglesias-Fernández R, Rodríguez-Gacio MC, Barrero-Sicilia C, Carbonero P, Matilla AJ (2011a) Three endo-β-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds. Planta 233:25–36CrossRefPubMedGoogle Scholar
  19. Iglesias-Fernández R, Rodríguez-Gacio MC, Barrero-Sicilia C, Carbonero P, Matilla AJ (2011b) Molecular analysis of endo-β-mannanase genes upon seed imbibition suggest a cross-talk between radicle and micropylar endosperm during germination of Arabidopsis thaliana. Plant Signal Behav 6:80–82CrossRefPubMedPubMedCentralGoogle Scholar
  20. Iglesias-Fernández R, Barrero-Sicilia C, Carrillo-Barral N, Oñate-Sánchez L, Carbonero P (2013) Arabidopsis thaliana bZIP44: a transcription factor affecting seed germination and expression of the mannanase-encoding gene AtMAN7. Plant J 74:767–780CrossRefPubMedGoogle Scholar
  21. Karcz J, Ksiazczyk T, Maluszynska J (2005) Seed coat patterns in rapid-cycling Brassica forms. Acta Biol Crac Ser Bot 47:159–165Google Scholar
  22. Kučerová D, Kollárová K, Zelko I, Vatehová Z, Lišková D (2014) Galactoglucomannan oligosaccharides alleviate cadmium stress in Arabidopsis. J Plant Physiol 171:518–524CrossRefPubMedGoogle Scholar
  23. Lee KP, Piskurewicz U, Tureckova V, Strnad N, Lopez-Molina L (2010) A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Nat Acad Sci USA 107:19108–19113CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lee KJ, Dekkers BJ, Steinbrecher T, Walsh CT, Bacic A, Bentsink L, Leubner-Metzger G, Knox JP (2012) Distinct cell wall architectures in seed endosperms in representatives of the Brassicaceae and Solanaceae. Plant Physiol 160:1551–1566CrossRefPubMedPubMedCentralGoogle Scholar
  25. Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822CrossRefPubMedPubMedCentralGoogle Scholar
  26. Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L, Leroux O, Rogowski A, Petersen HL, Boraston A, Gilbert HJ, Willats WG, Knox JP (2010) Restricted access of protein to mannan polysaccharides in intact plant cell walls. Plant J 64:191–203CrossRefPubMedGoogle Scholar
  27. Matilla AJ, Carrillo-Barral N, Rodríguez-Gacio MC (2015) An update on the role of NCED and CYP707A ABA-metabolism genes in seed dormancy induction and the response to after-ripening and nitrate. J Plant Growth Regul 34:274–293CrossRefGoogle Scholar
  28. Müller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877CrossRefPubMedGoogle Scholar
  29. Nonogaki H (2014) Seed dormancy and germination-emerging mechanisms and new hypothesis. Front Plant Sci 5:233CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nonogaki H, Gee OH, Bradford KJ (2000) A germination-specific endo-β-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol 123:1235–1246CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nonogaki H, Chen F, Bradford K (2007) Mechanisms and genes involved in germination sensu stricto. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell, Oxford, pp 264–304CrossRefGoogle Scholar
  32. Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Res 29:e45CrossRefPubMedPubMedCentralGoogle Scholar
  34. Reid JSG, Edwards M, Gidley MJ, Clark AH (1995) Enzyme specificity in galactomannan biosynthesis in galactomannan biosynthesis. Planta 195:489–495Google Scholar
  35. Rodríguez-Gacio MC, Iglesias-Fernández R, Carbonero P, Matilla AJ (2012) Softening-up mannan-rich cell walls. J Exp Bot 63:3975–3988CrossRefGoogle Scholar
  36. Steinbrecher T, Leubner-Metzger G (2017) The biomechanics of seed germination. J Exp Bot 68:765–783PubMedGoogle Scholar
  37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  38. Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  39. Voiniciuc C, Schmidt MH, Berger A, Yang B, Ebert B, Scheller HV, North HM, Usadel B, Günl M (2015) MUCILAGE-RELATED10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage. Plant Physiol 169:403–420CrossRefPubMedPubMedCentralGoogle Scholar
  40. Voiniciuc C, Zimmermann E, Schmidt MH, Günl M, Fu L, North HM, Usadel B (2016) Extensive natural variation in Arabidopsis seed mucilage structure. Front Plant Sci 7:803CrossRefPubMedPubMedCentralGoogle Scholar
  41. Weitbrecht K, Muller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309CrossRefPubMedGoogle Scholar
  42. Western TL, Skinner DJ, Haughn GW (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol 122:345–356CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yan D, Duermeyer L, Leoveanu C, Nambara E (2014) The functions of the endosperm during seed germination. Plant Cell Physiol 55:1521–1533CrossRefPubMedGoogle Scholar
  44. Yang X, Baskin CC, Baskin JM, Liu G, Huang Z (2012) Seed mucilage improves seedling emergence of a sand desert shrub. PLoS One 7:e34597CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yuan JS, Yang X, Lai J, Lin H, Cheng ZM, Nonogaki H, Chen F (2007) The endo-beta-mannanase gene families in Arabidopsis, rice, and poplar. Funct Integr Genom 7:1–16CrossRefGoogle Scholar
  46. Zeng CL, Wu X-M, Wang JB (2006) Seed coat development and its evolutionary implications in diploid and amphidiploids Brassica species. Acta Biol Crac Ser Bot 48:15–25Google Scholar
  47. Zhang X, Rogowski A, Zhao L, Hahn MG, Avci U, Knox JP, Gilbert HJ (2013) Understanding how the complex molecular architecture of mannan degrading hydrolases contributes to plant cell wall degradation. J Biol Chem 289:2002–2012CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhao Y, Song D, Sun J, Li L (2013) Populus endo-beta-mannanase PtrMAN6 plays a role in coordinating cell wall remodelling with suppression of secondary wall thickening through generation of oligosaccharide signals. Plant J 74:473–485CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de Fisiología Vegetal, Facultad de FarmaciaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Centro de Biotecnología y Genómica de Plantas (UPM-INIA)Universidad Politécnica de MadridMadridSpain

Personalised recommendations