, Volume 247, Issue 3, pp 559–572 | Cite as

Gene structure, expression pattern and interaction of Nuclear Factor-Y family in castor bean (Ricinus communis)

  • Yue Wang
  • Wei Xu
  • Zexi Chen
  • Bing Han
  • Mohammad E. Haque
  • Aizhong Liu
Original Article


Main conclusion

Nuclear Factor-Y transcription factors, which function in regulating seed development (including storage reservoir accumulation) and responding to abiotic stresses, were identified and characterized in castor bean.

Nuclear Factor-Y (NF-Y) transcription factors in plants contain three subunits (NF-YA, NF-YB and NF-YC), and function as a heterodimer or heterotrimer complex in regulating plant growth, development and response to stresses. Castor bean (Ricinus communis, Euphorbiaceae) one of the most economically important non-edible oilseed crops, able to grow in diverse soil conditions and displays high tolerance to abiotic stresses. Due to increasing demands for its seed oils, it is necessary to elucidate the molecular mechanism underlying the regulation of growth and development. Based on the available genome data, we identified 25 RcNF-Y members including six RcNF-YAs, 12 RcNF-YBs and seven RcNF-YCs, and characterized their gene structures. Yeast two-hybrid assays confirmed the protein–protein interactions among three subunits. Using transcriptomic data from different tissues, we found that six members were highly or specifically expressed in endosperms (in particular, two LEC1-type members RcNF-YB2 and RcNF-YB12), implying their involvement in regulating seed development and storage reservoir accumulation. Further, we investigated the expression changes of RcNF-Y members in two-week-old seedlings under drought, cold, hot and salt stresses. We found that the expression levels of 20 RcNF-Y members tested were changed and three RcNF-Y members might function in response to abiotic stresses. This study is the first reported on genomic characterization of NF-Y transcription factors in the family Euphorbiaceae. Our results provide the basis for improved understanding of how NF-Y genes function in the regulation of seed development and responses to abiotic stresses in both castor bean and other plants in this family.


Abiotic stress Castor bean Expression profiles NF-Y transcription factor Protein interaction 



Nuclear Factor-F


Ricinus communis


Leafy Cotyledon 1


Coding sequence


Yeast two hybrid



This work was supported by Chinese National Key Technology R & D Program (2015BAD15B02), National Natural Science Foundation of China (31661143002, 31501034 and 31401421) and Yunnan Applied Basic Research Projects (2016FB060, 2016FA011).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

425_2017_2809_MOESM1_ESM.pdf (986 kb)
Supplementary material 1 (PDF 986 kb)


  1. Akpan U, Jimoh A, Mohammed A (2006) Extraction, characterization and modification of castor seed oil. Leonardo J Sci 8:43–52Google Scholar
  2. Ballif J, Endo S, Kotani M, Macadam J, Wu Y (2011) Over-expression of HAP3b enhances primary root elongation in Arabidopsis. Plant Physiol Biochem 49:579–583. CrossRefPubMedGoogle Scholar
  3. Baud S, Kelemen Z, Thévenin J, Boulard C, Blanchet S, To A et al (2016) Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by master transcriptional regulators in Arabidopsis seed. Plant Physiol 171:1099–1112. PubMedPubMedCentralGoogle Scholar
  4. Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J 46:462–476CrossRefPubMedGoogle Scholar
  5. Brown AP, Kroon JT, Swarbreck D, Febrer M, Larson TR, Graham IA, Caccamo M, Slabas AR (2012) Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One 7(2):e30100. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cagliari A, Turchetto-Zolet AC, Korbes AP, dos Santos Maraschin F, Margis R, Margis-Pinheiro M (2014) New insights on the evolution of Leafy cotyledon1 (LEC1) type genes in vascular plants. Genomics 103:380–387. CrossRefPubMedGoogle Scholar
  7. Calvenzani V, Testoni B, Gusmaroli G, Lorenzo M, Gnesutta N, Petroni K, Mantovani R, Tonelli C (2012) Interactions and CCAAT-binding of Arabidopsis thaliana NF-Y subunits. PLoS One 7(8):e42902. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cao S, Kumimoto RW, Siriwardana CL, Risinger JR, Holt BF III (2011) Identification and characterization of NF-Y transcription factor families in the monocot model plant Brachypodium distachyon. PLoS One 6(6):e21805. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28(9):951–956. CrossRefPubMedPubMedCentralGoogle Scholar
  10. De Silvio A, Imbriano C, Mantovani R (1999) Dissection of the NF-Y transcriptional activation potential. Nucleic Acids Res 27(13):2578–2584CrossRefPubMedPubMedCentralGoogle Scholar
  11. Feng Z-J, He G-H, Zheng W-J, Lu P-P, Chen M, Gong Y-M, Ma Y-Z, Xu Z-S (2015) Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses. Front Plant Sci 6:1142. PubMedPubMedCentralGoogle Scholar
  12. Gietz RD, Schiest RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):38–41CrossRefPubMedGoogle Scholar
  13. Gusmaroli G, Tonelli C, Mantovani R (2001) Regulation of the CCAAT-binding NF-Y subunits in Arabidopsis thaliana. Gene 264:173–185CrossRefPubMedGoogle Scholar
  14. Hackenberg D, Keetman U, Grimm B (2012a) Homologous NF-YC2 subunit from Arabidopsis and tobacco is activated by photooxidative stress and induces flowering. Int J Mol Sci 13:3458–3477. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hackenberg D, Wu Y, Voigt A, Adams R, Schramm P, Grimm B (2012b) Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y. Mol Plant 5:876–888. CrossRefPubMedGoogle Scholar
  16. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297. CrossRefPubMedGoogle Scholar
  17. Huang M, Hu Y, Liu X, Li Y, Hou X (2015) Arabidopsis LEAFY COTYLEDON1 mediates postembryonic development via interacting with PHYTOCHROME-INTERACTING FACTOR4. Plant Cell 27:3099–3111. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Junker A, Bäumlein H (2012) Multifunctionality of the LEC1 transcription factor during plant development. Plant Signal Behav 7(12):1718–1720. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefPubMedGoogle Scholar
  20. Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15(1):5–18CrossRefPubMedPubMedCentralGoogle Scholar
  21. Laloum T, De Mita S, Gamas P, Baudin M, Niebel A (2013) CCAAT-box binding transcription factors in plants: Y so many? Trends Plant Sci 18(3):157–166. CrossRefPubMedGoogle Scholar
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948CrossRefPubMedGoogle Scholar
  23. Lee H, Fischer RL, Goldberg RB, Harada JJ (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc Natl Acad Sci USA 100(4):2152–2156CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lee DK, Kim HI, Jang G, Chung PJ, Jeong JS, Kim YS, Bang SW, Jung H, Choi YD, Kim JK (2015) The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner. Plant Sci 241:199–210. CrossRefPubMedGoogle Scholar
  25. Li W, Oono Y, Zhu J, He X, Wu J, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NF-YA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li S, Li K, Ju Z, Cao D, Fu D, Zhu H, Zhu B, Luo Y (2016) Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC Genom 17:36. CrossRefGoogle Scholar
  27. Liang M, Yin X, Lin Z, Zheng Q, Liu G, Zhao G (2014) Identification and characterization of NF-Y transcription factor families in canola (Brassica napus L.). Planta 239:107–126. CrossRefPubMedGoogle Scholar
  28. Liu X, Hu P, Huang M, Tang Y, Li Y, Li L, Hou X (2016) The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat Commun 7:12768. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205CrossRefPubMedGoogle Scholar
  30. McNabb DS, Pinto I (2005) Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae. Eukaryot Cell 4:1829–1839CrossRefPubMedPubMedCentralGoogle Scholar
  31. Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mendes A, Kelly AA, van Erp H, Shaw E, Powers SJ, Kurup S, Eastmond PJ (2013) bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating FATTY ACID DESATURASE3. Plant Cell 25:3104–3116. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mu J, Tan H, Zheng Q, Fu F, Liang Y, Zhang J, Yang X, Wang T, Chong K, Wang XJ, Zuo J (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mu J, Tan H, Hong S, Liang Y, Zuo J (2013) Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development. Mol Plant 6(1):188–201. CrossRefPubMedGoogle Scholar
  35. Myers ZA, Kumimoto RW, Siriwardana CL, Gayler KK, Risinger JR, Pezzetta D, Holt BF III (2016) NUCLEAR FACTOR Y, subunit C (NF-YC) transcription factors are positive regulators of photomorphogenesis in Arabidopsis thaliana. PLoS Gene 12(9):e1006333. CrossRefGoogle Scholar
  36. Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104(42):16450–16455CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129. CrossRefPubMedGoogle Scholar
  38. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97(9):1086–1091CrossRefPubMedGoogle Scholar
  39. Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF III, Mantovani R (2012) The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell 24:4777–4792. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Qiu L, Yang C, Tian B, Yang JB, Liu A (2010) Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol 10:278. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Quach TN, Nguyen HTM, Valliyodan B, Joshi T, Xu D, Nguyen HT (2015) Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response. Mol Genet Genomics 290:1095–1115. CrossRefPubMedGoogle Scholar
  42. Ren C, Zhang Z, Wang Y, Li S, Liang Z (2016) Genome-wide identification and characterization of the NF-Y gene family in grape (Vitis vinifera L.). BMC Genom 17:605. CrossRefGoogle Scholar
  43. Rípodas C, Castaingts M, Clúa J, Blanco F, Zanetti ME (2015) Annotation, phylogeny and expression analysis of the nuclear factor Y gene families in common bean (Phaseolus vulgaris). Front Plant Sci 5:761. PubMedPubMedCentralGoogle Scholar
  44. Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26:4954–4973. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Scholza V, da Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg 32:95–100CrossRefGoogle Scholar
  46. Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Siefers N, Dang KK, Kumimoto RW, Bynum WE IV, Tayrose G, Holt BF III (2009) Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol 149:625–641. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sinha S, Maity SN, Lu J, de Crombrugghe B (1995) Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci USA 92:1624–1628CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sorin C, Declerck M, Christ A, Blein T, Ma L, Lelandais-Brière C, Njo MF, Beeckman T, Crespi M, Hartmann C (2014) A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis. New Phytol 202:1197–1211CrossRefPubMedGoogle Scholar
  50. Steidl S, Tüncher A, Goda H, Guder C, Papadopoulou N, Kobayashi T, Tsukagoshi N, Kato M, Brakhage AA (2004) A single subunit of a heterotrimeric CCAAT-binding complex carries a nuclear localization signal: piggyback transport of the pre-assembled complex to the nucleus. J Mol Biol 342:515–524CrossRefPubMedGoogle Scholar
  51. Swain S, Myers ZA, Siriwardana CL, Holt BF III (2016) The multifaceted roles of NUCLEAR FACTOR-Y in Arabidopsis thaliana development and stress responses. Biochim Biophys Acta. Google Scholar
  52. Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol 156:1577–1588. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Thirumurugan T, Ito Y, Kubo T, Serizawa A, Kurata N (2008) Identification, characterization and interaction of HAP family genes in rice. Mol Genet Genomics 279(3):279–289. CrossRefPubMedGoogle Scholar
  54. Thön M, Al Abdallah Q, Hortschansky P, Scharf DH, Eisendle M, Haas H, Brakhage AA (2010) The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Res 38:1098–1113CrossRefPubMedGoogle Scholar
  55. West MAL, Yee KM, Danao J, Zimmerman JL, Fischer RL, Goldberg RB, Harada JJ (1994) LEAFY COTYLEDONl is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6:1731–1745CrossRefPubMedPubMedCentralGoogle Scholar
  56. Xu W, Li F, Ling L, Liu A (2013) Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.). BMC Genom 14:785. CrossRefGoogle Scholar
  57. Xu W, Chen Z, Ahmed N, Han B, Cui Q, Liu A (2016) Genome-wide identification, evolutionary analysis, and stress responses of the GRAS gene family in castor beans. Int J Mol Sci 17:1004. CrossRefPubMedCentralGoogle Scholar
  58. Yamamoto A, Kagaya Y, Toyoshima R, Kagaya M, Takeda S, Hattori T (2009) Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. Plant J 58:843–856. CrossRefPubMedGoogle Scholar
  59. Yeap WC, Lee FC, Shabari Shan DK, Musa H, Appleton DR, Kulaveerasingam H (2017) WRI1-1, ABI5, NF-YA3 and NF-YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm. Plant J 91:97–113. CrossRefPubMedGoogle Scholar
  60. Zhang F, Han M, Lv Q, Bao F, He Y (2015a) Identification and expression profile analysis of NUCLEAR FACTOR-Y families in Physcomitrella patens. Front Plant Sci 6:642. PubMedPubMedCentralGoogle Scholar
  61. Zhang T, Zhang D, Liu Y, Luo C, Zhou Y, Zhang L (2015b) Overexpression of a NF-YB3 transcription factor from Picea wilsonii confers tolerance to salinity and drought stress in transformed Arabidopsis thaliana. Plant Physiol Biochem 94:153–164. CrossRefPubMedGoogle Scholar
  62. Zhang Z, Li X, Zhang C, Zou H, Wu Z (2016) Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families. Biochem Biophys Res Commun 478:752–758. CrossRefPubMedGoogle Scholar
  63. Zhao H, Wu D, Kong F, Lin K, Zhang H, Li G (2017) The Arabidopsis thaliana nuclear factor Y transcription factors. Front Plant Sci 7:2045. PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yue Wang
    • 1
  • Wei Xu
    • 1
  • Zexi Chen
    • 1
    • 2
  • Bing Han
    • 1
    • 2
  • Mohammad E. Haque
    • 1
    • 2
  • Aizhong Liu
    • 1
  1. 1.Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations