Advertisement

Planta

, Volume 247, Issue 3, pp 573–585 | Cite as

Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress

  • Susanna Pollastri
  • Andreas Savvides
  • Massimo Pesando
  • Erica Lumini
  • Maria Grazia Volpe
  • Elif Aylin Ozudogru
  • Antonella Faccio
  • Fausta De Cunzo
  • Marco Michelozzi
  • Maurizio Lambardi
  • Vasileios Fotopoulos
  • Francesco Loreto
  • Mauro Centritto
  • Raffaella Balestrini
Original Article

Abstract

Main conclusion

AM symbiosis did not strongly affect Arundo donax performances under salt stress, although differences in the plants inoculated with two different fungi were recorded.

The mechanisms at the basis of the improved tolerance to abiotic stresses by arbuscular mycorrhizal (AM) fungi have been investigated mainly focusing on food crops. In this work, the potential impact of AM symbiosis on the performance of a bioenergy crop, Arundo donax, under saline conditions was considered. Specifically, we tried to understand whether AM symbiosis helps this fast-growing plant, often widespread in marginal soils, withstand salt. A combined approach, involving eco-physiological, morphometric and biochemical measurements, was used and the effects of two different AM fungal species (Funneliformis mosseae and Rhizophagus irregularis) were compared. Results indicate that potted A. donax plants do not suffer permanent damage induced by salt stress, but photosynthesis and growth are considerably reduced. Since A. donax is a high-yield biomass crop, reduction of biomass might be a serious agronomical problem in saline conditions. At least under the presently experienced growth conditions, and plant–AM combinations, the negative effect of salt on plant performance was not rescued by AM fungal colonization. However, some changes in plant metabolisms were observed following AM-inoculation, including a significant increase in proline accumulation and a trend toward higher isoprene emission and higher H2O2, especially in plants colonized by R. irregularis. This suggests that AM fungal symbiosis influences plant metabolism, and plant–AM fungus combination is an important factor for improving plant performance and productivity, in presence or absence of stress conditions.

Keywords

AM symbiosis Bioenergy crop Climate change Giant reed Plant tolerance Salinity 

Abbreviations

AM

Arbuscular mycorrhizal

AN

Photosynthesis

gs

Stomatal conductance

iWUE

Intrinsic water use efficiency

MDA

Malondialdehyde

P5CS

Δ1-Pyrroline-5-carboxylate synthase

Notes

Acknowledgements

This work was funded by Progetto Premiale 2012 CNR-Biofuels and third-generation biorefinery integrated with the territory. The authors thank Maria Teresa della Beffa for the help during plant preparation and growth.

Supplementary material

425_2017_2808_MOESM1_ESM.jpg (161 kb)
Supplementary material 1 Fig. S1 A comparative picture of A. donax plants non-inoculated (C) and inoculated with two different AM fungal species (Fm or Ri, i.e., F. mosseae and R. irregularis) under non-stressed (NS) and salt-stressed condition (SS), 4 months after AM-inoculation and 25 days after beginning the NaCl treatment (JPEG 161 kb)
425_2017_2808_MOESM2_ESM.xlsx (16 kb)
Supplementary material 2 (XLSX 16 kb)

References

  1. Ahrar M, Doneva D, Koleva D et al (2015) Isoprene emission in the monocot Arundineae tribe in relation to functional and structural organization of the photosynthetic apparatus. Environ Exp Bot 119:87–95CrossRefGoogle Scholar
  2. Angelini LG, Ceccarini L, Nassi o Di Nasso N, Bonari E (2009) Comparison of Arundo donax L. and Miscanthus × giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass Bioenergy 33:635–643CrossRefGoogle Scholar
  3. Antoniou C, Filippou P, Mylona P, Fasoula D, Ioannides I, Polidoros A, Fotopoulos V (2013) Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants. Plant Sign Behav 8:9CrossRefGoogle Scholar
  4. Armada E, Azcón R, López-Castillo OM, Calvo Polanco M, Ruiz-Lozano JM (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74CrossRefPubMedGoogle Scholar
  5. Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24CrossRefPubMedGoogle Scholar
  6. Azcón-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68:1–24CrossRefGoogle Scholar
  7. Balestrini R, Chitarra W, Fotopoulos V, Ruocco M (2017a) Potential role of beneficial soil microorganisms in plant tolerance to abiotic stress. In: Lukac M, Gamboni M, Grenni P (eds) Soil biological communities and ecosystem resilience. Sustainability in plant and crop protection. Springer, New York, pp 269–283. ISBN 978-3-319-63335-0Google Scholar
  8. Balestrini R, Salvioli A, Dal Molin A, Novero M, Gabelli G, Paparelli E, Marroni F, Bonfante P (2017b) Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots. Mycorrhiza 27:417–430CrossRefPubMedGoogle Scholar
  9. Baraza E, Tauler M, Romero-Munar A, Cifre J, Gulias J (2016) Mycorrhiza-based biofertilizer application to improve the quality of Arundo donax L. plantlets. In: Barth S, Murphy-Bokern D, Kalinina O, Taylor G, Jones M (eds) Perennial biomass crops for a resource-constrained world. Springer, New YorkGoogle Scholar
  10. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
  11. Beckett M, Loreto F, Velikova V, Brunetti C, Di Ferdinando M, Tattini M, Calfapietra C, Farrant JM (2012) Photosynthetic limitations and volatile and non-volatile isoprenoids in the poikilochlorophyllous resurrection plant Xerophyta humilis during dehydration and rehydration. Plant, Cell Environ 35:2061–2074CrossRefGoogle Scholar
  12. Bongi G, Loreto F (1989) Gas-exchange properties of salt-stressed olive (Olea europaea L) leaves. Plant Physiol 90:1408–1416CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  14. Brilli F, Tsonev T, Mahmood T, Velikova V, Loreto F, Centritto M (2013) Ultradian variation of isoprene emission, photosynthesis, mesophyll conductance and optimum temperature sensitivity for isoprene emission in water-stressed Eucalyptus citriodora saplings. J Exp Bot 64:519–528CrossRefPubMedGoogle Scholar
  15. Brugnoli E, Björkman O (1992) Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosyn Res 32:23–35CrossRefPubMedGoogle Scholar
  16. Chandrasekaran M, Kim K, Krishnamoorthy R, Walitang D, Sundaram S, Joe MM, Selvakumar G, Hu S, Oh S-H, Sa T (2016) Mycorrhizal symbiotic efficiency on C3 and C4 plants under salinity stress—a meta-analysis. Front Microbiol 7:1246CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 171:1009–1023PubMedPubMedCentralGoogle Scholar
  18. Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defense pathways. J Exp Bot 64:1953–1966CrossRefPubMedPubMedCentralGoogle Scholar
  19. Coleman-Derr D, Tringe SG (2014) Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Front Microbiol 5:283CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dahnke WC, Whitney DA (1988) Measurement of soil salinity. In: Recommended soil chemical test procedures for the North Central Region. North Central Regional Research Publication No. 221 (Revised). North Dakota Agricultural Experiment Station Bulletin 499, Fargo, pp 32–34Google Scholar
  21. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58CrossRefGoogle Scholar
  22. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379CrossRefPubMedPubMedCentralGoogle Scholar
  23. Delfine S, Alvino A, Villani MC, Loreto F (1999) Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol 119:1101–1106CrossRefPubMedPubMedCentralGoogle Scholar
  24. Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463CrossRefGoogle Scholar
  25. Dick WA, Tabatabai MA (1977) Hydrolisis of organic and inorganic phosphorus compounds added to soil. Geoderma 21:175–182CrossRefGoogle Scholar
  26. Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L). Saudi J Biol Sci 24:170–179CrossRefPubMedGoogle Scholar
  27. Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM (2013a) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant, Cell Environ 36:1771–1782CrossRefGoogle Scholar
  28. Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013b) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51CrossRefPubMedGoogle Scholar
  29. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280CrossRefPubMedPubMedCentralGoogle Scholar
  30. Feller U, Kingston-Smith AH, Centritto M (2017) Editorial: Abiotic stresses in agroecology: a challenge for whole plant physiology. Front Environ Sci 5:13.  https://doi.org/10.3389/fenvs201700013 CrossRefGoogle Scholar
  31. Filippou P, Antoniou C, Yelamanchili S, Fotopoulos V (2012) NO loading: efficiency assessment of five commonly used application methods of sodium nitroprusside in Medicago truncatula plants. Plant Physiol Biochem 60:115–118CrossRefPubMedGoogle Scholar
  32. Filippou P, Bouchagier P, Skotti E et al (2014) Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ Exp Bot 97:1–10CrossRefGoogle Scholar
  33. Fineschi S, Loreto F (2012) Leaf volatile isoprenoids: an important defensive armament in forest tree species. iForest 5:13–17CrossRefGoogle Scholar
  34. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92CrossRefGoogle Scholar
  35. Giberti S, Funck D, Forlani G (2014) Δ1-Pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. New Phytol 202:911–919CrossRefPubMedGoogle Scholar
  36. Haworth M, Cosentino LS, Marino G, Brunetti C, Scordia D, Testa G, Riggi E, Avola G, Loreto F, Centritto M (2017a) Physiological responses of Arundo donax ecotypes to drought: a common garden study. GCB Bioenergy 9:132–143CrossRefGoogle Scholar
  37. Haworth M, Catola S, Marino G, Brunetti C, Michelozzi M, Riggi E, Avola G, Cosentino SL, Loreto F, Centritto M (2017b) Moderate drought stress induces increased foliar dimethylsulphoniopropionate (DMSP) concentration and isoprene emission in two contrasting ecotypes of Arundo donax. Front Plant Sci 8:1016.  https://doi.org/10.3389/fpls201701016 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379CrossRefPubMedGoogle Scholar
  39. Lenoir I, Fontaine J, Sahraoui ALH (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15CrossRefPubMedGoogle Scholar
  40. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87CrossRefPubMedGoogle Scholar
  41. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361CrossRefGoogle Scholar
  42. Loreto F, Delfine S (2000) Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol 123:1605–1610CrossRefPubMedPubMedCentralGoogle Scholar
  43. Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166CrossRefPubMedGoogle Scholar
  44. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787CrossRefPubMedPubMedCentralGoogle Scholar
  45. Loreto F, Centritto M, Chartzoulakis K (2003) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant, Cell Environ 26:595–601CrossRefGoogle Scholar
  46. Marino G, Brunetti C, Tattini M, Romano A, Biasioli F, Tognetti R, Loreto F, Ferrini F, Centritto M (2017) Dissecting the role of isoprene and stress-related hormones, ABA and ethylene, signaling in split-root Populus nigra exposed to water stress. Tree Physiol.  https://doi.org/10.1093/treephys/tpx083 PubMedGoogle Scholar
  47. Merlos MA, Zitka O, Vojtech A, Azcón-Aguilar C, Ferrol N (2016) The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance. Plant Sci 253:68–73CrossRefPubMedGoogle Scholar
  48. Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250CrossRefGoogle Scholar
  49. Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673CrossRefPubMedGoogle Scholar
  50. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefPubMedGoogle Scholar
  51. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  52. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  53. Nackley LL, Kim S-H (2015) A salt on the bioenergy and biological invasions debate: salinity tolerance of the invasive biomass feedstock Arundo donax. GCB Bioenergy 7:752–762CrossRefGoogle Scholar
  54. Navarro JM, Pérez-Tornero O, Morte A (2014) Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol 171:76–85CrossRefPubMedGoogle Scholar
  55. Olowu RA, Adewuyi GO, Onipede OJ, Lawal OA, Sunday OM (2015) Concentration of heavy metals in root, stem and leaves of Acalypha indica and Panicum maximum jacq from three major dumpsites in Ibadan Metropolis, South West Nigeria. Am J Chem 5:40–48Google Scholar
  56. Pompeiano A, Landi M, Meloni G, Vita F, Guglielminetti L, Guidi L (2017) Allocation pattern, ion partitioning, and chlorophyll a fluorescence in Arundo donax L in responses to salinity stress. Plant Biosyst.  https://doi.org/10.1080/11263504.2016.1187680 Google Scholar
  57. Porcel R, Aroca R, Ruíz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200CrossRefGoogle Scholar
  58. Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359CrossRefPubMedGoogle Scholar
  59. Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM (2017) Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci 8:1056.  https://doi.org/10.3389/fpls201701056 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Romero-Munar A, Del-Saz NF, Ribas-Carbó M, Flexas J, Baraza E, Florez-Sarasa I, Fernie AR, Gulías J (2017) Arbuscular mycorrhizal symbiosis with Arundo donax decreases root respiration and increases both photosynthesis and plant biomass accumulation. Plant, Cell Environ 40:1115–1126CrossRefGoogle Scholar
  61. Sánchez E, Scordia D, Lino G, Arias C, Cosentino SL, Nogués S (2015) Salinity and Water stress effects on biomass production in different Arundo donax L clones. Bioenerg Res 8:1461CrossRefGoogle Scholar
  62. Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming against multiple abiotic stresses: mission possible? Trends Plant Sci 21:329–340CrossRefPubMedGoogle Scholar
  63. Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260CrossRefPubMedPubMedCentralGoogle Scholar
  64. Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J et al (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569CrossRefPubMedGoogle Scholar
  65. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97CrossRefPubMedGoogle Scholar
  66. Tattini M, Loreto F, Fini A, Guidi L, Brunetti C, Velikova V, Gori A, Ferrini F (2015) Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers. New Phytol 37:1950–1964Google Scholar
  67. Tauler M, Baraza E (2015) Improving the acclimatization and establishment of Arundo donax L plantlets, a promising energy crop, using a mycorrhiza-based biofertilizer. Ind Crop Prod 66:99–304CrossRefGoogle Scholar
  68. Tedeschi A, Zong L, Huang CH, Vitale L, Volpe MG, Xue X (2017) Effect of salinity on growth parameters, soil water potential and ion composition in Cucumis melo cv Huanghemi in North-Western China. J Agro Crop Sci 203:41–55CrossRefGoogle Scholar
  69. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Estimation of VA mycorrhizal infection levels Research for methods having a functional significance. Proceedings of the first European symposium, physiological and genetical aspects of mycorrhizae. Dijon Centre National de la Recherche Scientifique, Dijon; Institut National de la Recherche Agronomique, Dijon; Station d’Amelioration des Plantes, Paris, pp 217–221Google Scholar
  70. Unno H, Maeda Y, Yamamoto S, Okamoto M, Takenaga H (2002) Relationship between salt tolerance and Ca2+ retention among plant species. Jpn J Soil Sci Plant Nutr 73:715–718Google Scholar
  71. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291CrossRefPubMedGoogle Scholar
  72. Walder F, van der Heijden MGA (2015) Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat Plants.  https://doi.org/10.1038/nplants2015159 PubMedGoogle Scholar
  73. Wang W-G, Li R, Liu B et al (2011) Effects of low nitrogen and drought stresses on proline synthesis of Jatropha curcas seedling. Acta Physiol Plant 33:1591–1595CrossRefGoogle Scholar
  74. Yang S, Zhang Z, Xue Y et al (2014) Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Bot Stud 55:70.  https://doi.org/10.1186/s40529-014-0070-6 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Cha-um S (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hortic 198:107–117CrossRefGoogle Scholar
  76. Zall DM, Fisher D, Garner MQ (1956) Photometric determination of chlorides in water. Anal Chem 28:1655–1668CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Susanna Pollastri
    • 1
  • Andreas Savvides
    • 2
  • Massimo Pesando
    • 1
  • Erica Lumini
    • 1
  • Maria Grazia Volpe
    • 3
  • Elif Aylin Ozudogru
    • 4
  • Antonella Faccio
    • 1
  • Fausta De Cunzo
    • 3
  • Marco Michelozzi
    • 5
  • Maurizio Lambardi
    • 4
  • Vasileios Fotopoulos
    • 2
  • Francesco Loreto
    • 6
  • Mauro Centritto
    • 4
  • Raffaella Balestrini
    • 1
  1. 1.The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP)Sesto FiorentinoItaly
  2. 2.Cyprus University of Technology (CUT)LimassolCyprus
  3. 3.CNR, Institute of Food SciencesAvellinoItaly
  4. 4.CNR, Institute of Trees and Timber (IVALSA)Sesto FiorentinoItaly
  5. 5.CNR, Institute of Biosciences and BioresourcesSesto FiorentinoItaly
  6. 6.CNR, Department of Biology, Agriculture and Food Sciences (DiSBA)RomeItaly

Personalised recommendations