Skip to main content
Log in

Effect of salt stress on fatty acid and α-tocopherol metabolism in two desert shrub species

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusions

Compared to Artemisia ordosiea Kraschen, a higher content of α-tocopherol in Artemisia sphaerocephala Kraschen under salt stress inhibits the conversion of linoleic acid (C18:2) into linolenic acid (C18:3), maintains cell membrane stability and contributes to higher salt resistance.

Artemisia sphaerocephala Kraschen and Artemisia ordosiea Kraschen are widely distributed in the arid and semiarid desert regions of the northwest of China. Under salt stress, it has been known that α-tocopherol (α-T) improves membrane permeability and maintains Na+/K+ homeostasis; however, the function of α-T in regulating membrane components of fatty acids is unknown. In this study, 100-day-old plants of A. ordosiea and A. sphaerocephala are subjected to various NaCl treatments for 7, 14, and 21 days. Compared to A. ordosiea, A. sphaerocephala has a higher Na+ concentration, higher chlorophyll content and dry weight in all NaCl treatments, but lower relative electric conductivity. The stable unsaturated levels of the lipids in A. sphaerocephala may be attributed to higher level of C18:2. Under 200 mM NaCl treatment, α-T and C18:2 contents in A. sphaerocephala increase significantly, while the Na+, C18:1, C18:3 and jasmonic acid (JA) contents decrease. Moreover, α-T is positively correlated with C18:2, but negatively correlated with C18:3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-T:

α-Tocopherol

C18:1:

Oleic acid

C18:2:

Linoleic acid

C18:3:

Linolenic acid

FA:

Fatty acid

JA:

Jasmonic acid

PM:

Plasma membrane

PUFA:

Polyunsaturated fatty acid

References

  • Board E (2010) Flora of China, vol 2-25. Science Press, Beijing

    Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  Google Scholar 

  • Cheng DH, Wang WK, Chen XH, Hou GC, Yang HB, Li Y (2011) A model for evaluating the influence of water and salt on vegetation in a semi-arid desert region, northern China. Environ Earth Sci 64:337–346

    Article  Google Scholar 

  • Chrost B, Falk J, Kernebeck B, Mölleken H, Krupinska K (1999) Tocopherol biosynthesis in senescing chloroplasts—a mechanism to protect envelope membranes against oxidative stress and a prerequisite for lipid remobilization? In: Argyroudi-Akoyunoglou JH, Senger H (eds) The chloroplast: from molecular biology to biotechnology. Kluwer Academic Press, Dordrecht, pp 171–176

    Chapter  Google Scholar 

  • Dörmann P (2007) Functional diversity of tocochromanols in plants. Planta 225:269–276

    Article  PubMed  Google Scholar 

  • Egesel CÖ, Gül MK, Kahrıman F, Türk IÖ (2008) The effect of nitrogen fertilization on tocopherols in rapeseed genotypes. Eur Food Res Technol 227:871–880

    Article  CAS  Google Scholar 

  • Elkahoui S, Smaoui A, Zarrouk M, Ghrir R, Limam F (2004) Salt-induced lipid changes in Catharanthus roseus cultured cell suspensions. Phytochemistry 65:1911–1917

    Article  CAS  PubMed  Google Scholar 

  • Ellouzi H, Hamed KB, Cela J, Müller M, Abdelly C, Munné-Bosch S (2013) Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system. Plant Signal Behav 8:e23136–e23149

    Article  PubMed  PubMed Central  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farouk S (2011) Ascorbic acid and α-tocopherol minimize salt-induced wheat leaf senescence. J Physiol Biochem 7:58–79

    Google Scholar 

  • Filek M, Walas S, Mrowiec H, Rudolphy-Skórska E, Sieprawska A, Biesaga-Kościelniak J (2012) Membrane permeability and micro- and macroelement accumulation in spring wheat cultivars during the short-term effect of salinity- and PEG-induced water stress. Acta Physiol Plant 34:985–995

    Article  CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Hajlaoui H, Denden M, Ayeb NE (2009) Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) roots. Acta Physiol Plant 31:787–796

    Article  CAS  Google Scholar 

  • Hanway J, Heidel H (1952) Soil analysis methods as used in Iowa state college soil testing laboratory. Iowa Agric 57:1–31

    Google Scholar 

  • Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301:7–56

    Article  PubMed  Google Scholar 

  • Havaux M, Eymery F, Porfirova S, Rey P, Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17(12):3451–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Daniell H (2014) Expression of γ-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stresses by reducing reactive oxygen species. Plant Biotechnol J 12:1274–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal-Eldi A, Görgen S, Pettersson J, Lampi AM (2000) Normal-phase high-performance liquid chromatography of tocopherols and tocotrienols. Comparison of different chromatographic columns. J Chromatogr A 881:217–227

    Article  CAS  PubMed  Google Scholar 

  • Koohafkan P, Stewart BA (2008) Water and cereals in drylands. Food and Agriculture Organization of the United Nations, Earthscan

    Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in alpha-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Hussain N, Zhang LM, Chen XY, Ali E, Jiang LX (2013) Correlations between tocopherol and fatty acid components in germplasm collections of Brassica oilseeds. J Agric Food Chem 61(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Lobos GA, Retamales JB, Hancock JF, Flore JA, Cobo N, Pozo AD (2012) Spectral irradiance, gas exchange characteristics and leaf traits of Vaccinium corymbosum L. ‘Elliott’ grown under photo-selective nets. Environ Exp Bot 75:142–149

    Article  Google Scholar 

  • López-Pérez L, Martínez-Ballesta MC, Maurel C, Carvajal M (2009) Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry 70(4):492–500

    Article  PubMed  Google Scholar 

  • Lu YD, Chi XY, Yang QL, Li ZX, Liu SF, Gan QH, Qin S (2009) Molecular cloning and stress-dependent expression of a gene encoding Delta12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles 13(6):875–884

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Sage TL, Isaac G, Welti R, Dellapenna D (2008) Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 20(2):452–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour MMF (2012) Plasma membrane permeability as an indicator of salt tolerance in plants. Biol Plant 57:1–10

    Article  Google Scholar 

  • Mansour MMF (2014) The plasma membrane transport systems and adaptation to salinity. J Plant Physiol 171(18):1787–1800

    Article  CAS  PubMed  Google Scholar 

  • Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122

    Article  CAS  Google Scholar 

  • Mao ZX, Fu H, Nan ZB, Wang J, Wan CG (2012) Fatty acid content of common vetch (Vicia sativa L.) in different regions of Northwest China. Biochem Syst Ecol 44:347–351

    Article  CAS  Google Scholar 

  • Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plant 106:135–141

    Article  CAS  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Article  Google Scholar 

  • Munné-Bosch S, Weiler EW, Alegre L, Müller M, Düchting P, Falk J (2007) α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta 225:681–691

    Article  PubMed  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Melfi D, Izzo R (1993) Lipid composition of plasma membranes isolated from sunflower seedlings grown under water-stress. Physiol Plant 87:508–514

    Article  CAS  Google Scholar 

  • Padham AK, Hopkins MT, Wang TW, Mcnamara LM, Lo M, Richardson LG, Smith MD, Taylor CA, Thompson JE (2007) Characterization of a plastid triacylglycerol lipase from Arabidopsis. Plant Physiol 143:1372–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procházková D, Wilhelmová N (2007) Leaf senescence and activities of the antioxidant enzymes. Biol Plant 51:401–406

    Article  Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Dev 19:429–453

    Article  Google Scholar 

  • Rekha C, Reema C, Alka S (2012) Salt tolerance of Sorghum bicolor cultivars during germination and seedlinggrowth. Res J Rec Sci 1(3):1–10

    Google Scholar 

  • Ryan E, Galvin K, O’Connor TP, Maguire AR, O’Brien NM (2007) Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Food Hum Nutr 62:85–91

    Article  CAS  Google Scholar 

  • Sakuragi Y, Maeda H, Dellapenna D, Bryant DA (2006) Alpha-tocopherol plays a role in photosynthesis and macronutrient homeostasis of the cyanobacterium Synechocystis sp. PCC 6803 that is independent of its antioxidant function. Plant Physiol 141:508–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salama KHA (2009) Amelioration of NaCl-induced alterations on the plasma membrane of Allium cepa L. by ascorbic acid. Austr J Basic Appl Sci 3(2):990–994

    CAS  Google Scholar 

  • Salama KHA, Mansour MMF, Ali FZM, Abou-Hadid AF (2007) NaCl-induced changes in plasma membrane lipids and proteins of Zea mays L. cultivars differing in their response to salinity. Acta Physiol Plant 29:351–359

    Article  CAS  Google Scholar 

  • Sárvári É, Balczer T, Szigeti Z, Záray G, Fodor F (2008) Effect of Cd on the iron re-supply-induced formation of chlorophyll-protein complexes in cucumber. Acta Biol Szeged 52:183–186

    Google Scholar 

  • Schaller F (2001) Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. J Exp Bot 52(354):11–23

    Article  CAS  PubMed  Google Scholar 

  • Shu S, Yuan LY, Guo SR, Sun J, Yuan YH (2013) Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol Biochem 63:209–216

    Article  CAS  PubMed  Google Scholar 

  • Skłodowska M, Gapińska M, Gajewska E, Gabara B (2009) Tocopherol content and enzymatic antioxidant activities in chloroplasts from NaCl-stressed tomato plants. Acta Physiol Plant 31:393–400

    Article  Google Scholar 

  • Sui N, Li M, Li K, Song J, Wang BS (2010) Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity. Photosynthetica 48:623–629

    Article  CAS  Google Scholar 

  • Sun YX, Xiao J, Jia XP, Ke PB, He LQ, Cao AZ, Wang HY, Wu YF, Gao XQ, Wang X (2016) The role of wheat jasmonic acid and ethylene pathways in response to Fusarium graminearum infection. Plant Growth Regul 80:69–77

    Article  CAS  Google Scholar 

  • Tiwari JK, Munshi AD, Kumar R, Pandey RN, Arora A, Bhat JS, Sureja AK (2010) Effect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol Plant 32:103–114

    Article  CAS  Google Scholar 

  • Upchurch R (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977

    Article  CAS  PubMed  Google Scholar 

  • Vom D, Hölzl G, Plohmann C, Eisenhut M, Abraham M, Weber APM, Hanson AD, Dörmann P (2015) Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis. Plant Cell 27(10):2846–2859

    Google Scholar 

  • Wang SM, Wan CG, Wang YR, Chen H, Zhou ZY, Fu H, Sosebee RE (2004) The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. J Arid Environ 56:525–539

    Article  Google Scholar 

  • Wang WH, Barbara KH, Cao FQ, Liu LH (2008) Molecular and physiological aspects of urea transport in higher plants. Plant Sci 175:467–477

    Article  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (London) 100:681–697

    Article  CAS  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. BBA (Bioenergetics) 1797:1428–1438

    Article  CAS  Google Scholar 

  • Zamani S, Bybordi A, Khorshidi MB, Nezami T (2010) Effects of NaCl salinity levels on lipids and proteins of canola (Brassica napus L.) cultivars. Adv Environ Res 28:197–206

    Google Scholar 

  • Zhang JT, Liu H, Sun J, Li B, Qiang Z, Chen SL, Zhang HX (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. Plos One 7(7):e30355 1–e30355 12

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Changgui Wan (Department of Natural Resources Management, Texas Technology University, USA) and Prof. Zengyu Wang (The Samuel Roberts Noble Foundation, USA) for the great help in English improving and discussion on possible mechanism. We also thank Haiyan Wen (State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University) for data analysis. This work was supported by the National Basic Research Program of China (2014CB138703), National Key R&D Program of China (2016YFC0500506), National Natural Science Foundation of China (31770763), the Program for Chang Jiang Scholars and Innovative Research Team in University (IRT-17R50), and the Fundamental Research Funds for the Central Universities (lzujbky-2017-54).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijing Zhang or Hua Fu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2017_2803_MOESM1_ESM.jpg

Supplementary material 1 Supplemental Fig. S1 % Change over control of C18:2 in A. sphaerocephala (a) and A. ordosiea (b) leaves treated with 50, 100, 150 and 200 mM NaCl for various periods. Values are mean ± SD (n = 5) and bars indicate SD. Different letters within a column indicate significant difference at P < 0.05 (JPEG 2711 kb)

425_2017_2803_MOESM2_ESM.jpg

Supplementary material 2 Supplemental Fig. S2 % Change over control of C18:3 in A. sphaerocephala (a) and A. ordosiea (b) leaves treated with 50, 100, 150 and 200 mM NaCl for various periods. Values are mean ± SD (n = 5) and bars indicate SD. Different letters within a column indicate significant difference at P < 0.05 (JPEG 2714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, L., Miao, X. et al. Effect of salt stress on fatty acid and α-tocopherol metabolism in two desert shrub species. Planta 247, 499–511 (2018). https://doi.org/10.1007/s00425-017-2803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2803-8

Keywords

Navigation