Skip to main content
Log in

Funaria hygrometrica Hedw. elevated tolerance to D2O: its use for the production of highly deuterated metabolites

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The method introduced here to grow F. hygrometrica in high concentrations of D 2 O is an excellent alternative to produce highly deuterated metabolites with broad applications in metabolic studies. Our mass spectrometry experiments strongly indicate the successful incorporation of deuterium into organic compounds.

Deuterated metabolites are useful tracers for metabolic studies, yet their wide utilization in research is limited by the multi-step total synthesis required to produce them in the laboratory. Alternatively, deuterated metabolites can be obtained from organisms grown in D2O or deuterated nutrients. This approach also has limitations as D2O in high concentrations negatively affects the survival of most organisms. Here we report the moss Funaria hygrometrica as an unusual high tolerant to D2O in liquid culture. We found that this moss is able to grow in up to 90% D2O, a condition lethal for many eukaryotes. Mass spectrometric analyses of F. hygrometrica extracts showed a strong deuteration pattern. The ability to tolerate high concentrations of D2O together with the development of a rich molecular toolbox makes F. hygrometrica an ideal system for the production of valuable deuterated metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asakawa Y (2001) Recent advances in phytochemistry of bryophytes-acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts. Phytochemistry 56:297–312

    Article  CAS  PubMed  Google Scholar 

  • Asakawa Y (2012) Bio- and chemical diversity of bryophytes: chemical structures and bioactivity of scents and related compounds. Aroma Res 51:270–278

    Google Scholar 

  • Asakawa Y, Ludwiczuk A, Nagashima F (2013a) Phytochemical and biological studies of bryophytes. Phytochemistry 91:52–80

    Article  CAS  PubMed  Google Scholar 

  • Asakawa Y, Ludwiczuk A, Nagashima F (2013b) Chemical constituents of bryophytes. Bio- and chemical diversity, biological activity, and chemosystematics. In: Progress in the chemistry of organic natural products, vol 95. Springer, Wien

  • Beranová L, Humpolíčková J, Sýkora J, Benda A, Cwiklik L, Jurkiewicz P, Gröbnerb G, Hof M (2012) Effect of heavy water on phospholipid membranes: experimental confirmation of molecular dynamics simulations. Phys Chem Chem Phys 14:14516–14522

    Article  PubMed  Google Scholar 

  • Bünning E, Baltes J (1963) Zur Wirkung von schwerem Wasser auf die endogene Tagesrhythmik. Naturwissenschaften 50:622

    Article  Google Scholar 

  • Caire G, Calderón de la Barca A, Bolaños A, Valencia M, Coward A, Salazar G, Casanueva E (2002) Measurement of deuterium oxide by infrared spectroscopy and isotope ratio mass spectrometry for quantifying daily milk intake in breastfed infants and maternal body fat. Food Nutr Bull 23(3 Suppl):38–41

    PubMed  Google Scholar 

  • Cardoso M, Carvalho L, Sabadini E (2012) Solubility of carbohydrates in heavy water. Carbohyd Res 353:57–61

    Article  CAS  Google Scholar 

  • Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358

    Article  CAS  PubMed  Google Scholar 

  • Cove D, Bezanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    Article  CAS  PubMed  Google Scholar 

  • Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170

    Article  CAS  PubMed  Google Scholar 

  • Eckert H, LaVallee B, Schweiger B, Kinney A, Cahoon E, Clemente T (2006) Co-expression of the borage Δ6 desaturase and the Arabidopsis Δ15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 224:1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Eiamsa-ard P, Kanjana-Opas A, Cahoon E, Chodok P, Kaewsuwan S (2013) Two novel Physcomitrella patens fatty acid elongases (ELOs): identification and functional characterization. Appl Microbiol Biotechnol 97:3485–3497

    Article  CAS  PubMed  Google Scholar 

  • Evans B, Bali G, Foston M, Ragauskas A, O’Neill H, Shah R, McGaughey J, Reeves D, Rempe C, Davison B (2015) Production of deuterated switchgrass by hydroponic cultivation. Planta 242:215–222

    Article  CAS  PubMed  Google Scholar 

  • Fan T, Lane A (2016) Applications of NMR spectroscopy to systems biochemistry. Prog Nucl Magn Res SP 92(93):18–53

    Article  Google Scholar 

  • Foston M, McGaughey J, O’Neill H, Evans B, Ragauskas A (2012) Deuterium incorporation in biomass cell wall components by NMR analysis. Analyst 137:1090–1093

    Article  CAS  PubMed  Google Scholar 

  • Hohlefelder LS, Stögbauer T, Opitz M, Bayerl TM, Rädler JO (2013) Heavy water reduces GFP expression in prokaryotic cell-free assays at the translation level while stimulating its transcription. Biomed Res Int. doi:10.1155/2013/592745

    PubMed  PubMed Central  Google Scholar 

  • Itouga M, Honma Y, Nakatsuka S, Komatsu Y, Kawakami S, Sakakibara H (2010) Aqueous environment conservation and metal-resource recycling technology using the moss Funaria hygrometrica. Regul Plant Growth Dev 45:64–72

    CAS  Google Scholar 

  • Itouga M, Kato Y, Kawakami S, Sakakibara H (2011) Removal of heavy metals from water using bryophytes. Oyo Buturi 80:710–713

    CAS  Google Scholar 

  • Jingjing L, Huan Y, Deng L, Junhua H (2010) Comparative analysis of lipids in Funaria hygrometrica Hdew from different habitats. J Earth Sci 21(special issue):247–249

    Google Scholar 

  • Kind T, Fiehn O (2007) Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinform 8:105

    Article  Google Scholar 

  • Kushner DJ, Baker A, Dunstall TG (1999) Pharmacological uses and perspectives of heavy water and deuterated compounds. Can J Physiol Pharm 77:79–88

    Article  CAS  Google Scholar 

  • Kutyshenko V, Beskaravayny P, Uversky V (2015) “In-plant” NMR: analysis of the intact plant Vesicularia dubyana by high resolution NMR spectroscopy. Molecules 20:4359–4368

    Article  CAS  PubMed  Google Scholar 

  • Lecchi P, Abramson F (2000) An innovative method for measuring hydrogen and deuterium: chemical reaction interface mass spectrometry with nitrogen reactant gas. J Am Soc Mass Spectrom 11(5):400–406

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Obando M, Hoffmann B, Géry C, Guyon-Debast A, Téoulé E, Rameau C, Bonhomme S, Nogué F (2016) Simple and efficient targeting of multiple genes through CRISPR–Cas9 in Physcomitrella patens. G3 Genes Genom Genet 6(11):3647–3653

    Google Scholar 

  • Nomura T, Sakurai T, Osakabe Y, Osakabe K, Sakakibara H (2016) Efficient and heritable targeted mutagenesis in mosses using the CRISPR/Cas9 system. Plant Cell Physiol 57(12):2600–2610

    Article  CAS  PubMed  Google Scholar 

  • Rao DM, Reddy TP, Reddy GM (1971) Induction of chlorophyll mutations by deuterium oxide (D2O) in Oryza sativa L. Mutat Res 12(1):109–111

    Article  CAS  Google Scholar 

  • Sacchi GA, Cocucci M (1992) Effects of deuterium oxide on growth, proton extrusion, potassium influx, and in vitro plasma membrane activities in maize root segments. Plant Physiol 100(4):1962–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibabe S, Yeh-Yoda KL, Tensho K (1980) Suppression of germination of rice seeds by deuterium oxide. Radioisotopes 29(10):493–494

    Article  CAS  PubMed  Google Scholar 

  • Shinaki T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    Article  Google Scholar 

  • Sitarska A, Skora L, Klopp J, Roest S, Fernández C, Shrestha B, Gossert A (2015) Affordable uniform isotope labeling with 2H, 13C and 15N in insect cells. J Biomol NMR 62:191

    Article  CAS  PubMed  Google Scholar 

  • Sreedhar R, Prasad P, Prasanna L, Rajasekharan R, Srinivasan M (2017) Unravelling a stearidonic acid rich triacylglycerol biosynthetic pathway in the developing seeds of Buglossoides arvensis: a transcriptomic landscape. Sci Rep 7:10473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teffera Y, Abramson F (1993) Development of an isotope-selective high-performance liquid chromatography detector using chemical-reaction-interface mass spectrometry: applications to deuterated cortisol metabolites in urine. J Chromatogr 620:89–96

    Article  CAS  PubMed  Google Scholar 

  • Vinyard D, Ananyev G, Dismukes G (2013) Photosystem II: the reaction center of oxygen photosynthesis. Annu Rev Biochem 82:577–606

    Article  CAS  PubMed  Google Scholar 

  • Waltham C (2011) An early history of heavy water. http://arxiv.org/abs/physics/0206076v2. Accessed 15 May 2014 at 06:50 GMT

  • Weindl D, Wegner A, Hiller K (2016) MIA: non-targeted mass isotopolome analysis. Bioinformatics 32(18):2875–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler R (2015) SpiderMass: semantic database creation and tripartite metabolite identification strategy. J Mass Spectrom 50:538–541

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Chen W, Rendahl A, Hegeman A, Gray W, Cohen J (2010) Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study. Plant J 63:680–695

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by JSPS KAKENHI Grant number 25113010 to M.Y.H. The financial support was provided by CINVESTAV and CONACYT basic science grant FRONTERAS 2015-2/814 to R.W. The authors are grateful to Esperanza Ayala Gil, M.Sc., and Dr. David Gómez Zepeda for their support on mass spectrometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredd Vergara.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergara, F., Itouga, M., Becerra, R.G. et al. Funaria hygrometrica Hedw. elevated tolerance to D2O: its use for the production of highly deuterated metabolites. Planta 247, 405–412 (2018). https://doi.org/10.1007/s00425-017-2794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2794-5

Keywords

Navigation