, Volume 246, Issue 6, pp 1109–1124 | Cite as

Holaphyllamine, a steroid, is able to induce defense responses in Arabidopsis thaliana and increases resistance against bacterial infection

  • Abderrakib Zahid
  • Rim Jaber
  • Ferdousse Laggoun
  • Arnaud Lehner
  • Isabelle Remy-Jouet
  • Olivier Pamlard
  • Sandra Beaupierre
  • Jérome Leprince
  • Marie-Laure Follet-Gueye
  • Maïté Vicré-Gibouin
  • Xavier Latour
  • Vincent Richard
  • Catherine Guillou
  • Patrice Lerouge
  • Azeddine Driouich
  • Jean-Claude MolletEmail author
Original Article


Main conclusion

A chemical screen of plant-derived compounds identified holaphyllamine, a steroid, able to trigger defense responses in Arabidopsis thaliana and improve resistance against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000.

A chemical screen of 1600 plant-derived compounds was conducted and allowed the identification of a steroid able to activate defense responses in A. thaliana at a concentration of 1 µM without altering growth. The identified compound is holaphyllamine (HPA) whose chemical structure is similar to steroid pregnanes of mammals. Our data show that HPA, which is not constitutively present in A. thaliana, is able to trigger the formation of reactive oxygen species, deposition of callose and expression of several pathogenesis-related genes of the salicylic and jasmonic acid pathways. In addition, the results show that pre-treatment of A. thaliana seedlings with HPA before infection with the pathogenic bacterium Pseudomonas syringae pv tomato DC3000 results in a significant reduction of symptoms (i.e., reduction of bacterial colonies). Using A. thaliana mutants, we have found that the activation of defense responses by HPA does not depend on BRI1/BAK1 receptor kinases. Finally, a structure/function study reveals that the minimal structure required for activity is a 5-pregnen-20-one steroid with an equatorial nucleophilic group in C-3. Together, these findings demonstrate that HPA can activate defense responses that lead to improved resistance against bacterial infection in A. thaliana.


Callose Chemical screen Elicitor Holaphyllamine PATHOGENESIS-RELATED Plant defense Pseudomonas syringae pv tomato DC3000 ROS Steroid 





Days post-inoculation






Pathogenesis related


Pseudomonas syringae pv tomato DC3000



We are grateful to Pr. Jianming Li (University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI, USA) for the kind gift of the bri1-9 mutant.

Compliance with ethical standards


This work was supported by the research network “Végétal-Agronomie-Sol-Innovations” (VASI) de Haute-Normandie and the Fonds Européen de Développement Régional (FEDER) in the ALTERAGRO project and the French ministry of Research and Higher Education. The post-doctoral scholarship of AZ was funded by FEDER. Cell imaging, microplate fluorescence detection and qRT-PCR analyses were performed at PRIMACEN (, the Cell Imaging Platform of Normandy, IRIB, Normandie Univ, UniRouen, 76821 Mont-Saint-Aignan, France.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

425_2017_2755_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1944 kb)


  1. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophot Int 11:36–43Google Scholar
  2. Albrecht C, Russinova E, Kemmerling B, Kwaaitaal M, de Vries SC (2008) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiol 1:611–619. doi: 10.1105/tpc.105.039412 CrossRefGoogle Scholar
  3. Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci USA 109:303–308. doi: 10.1073/pnas.1109921108 CrossRefPubMedGoogle Scholar
  4. Bektas Y, Eulgem T (2015) Synthetic plant defense elicitors. Front Plant Sci 5:804. doi: 10.3389/fpls.2014.00804 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Belkhadir Y, Durbak A, Wierzba M, Schmitz RJ, Aguirre A, Michel R, Rowe S, Fujioka S, Tax FE (2010) Intragenic suppression of a trafficking-defective brassinosteroid receptor mutant in Arabidopsis. Genetics 185:1283–1296. doi: 10.1534/genetics.109.111898 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Belkhadir Y, Jaillais Y, Epple P, Balsemao-Pires E, Dangl JL, Chory J (2012) Brassinosteroids modulate the efficiency of plant immune responses to micro-associated molecular patterns. Proc Natl Acad Sci USA 109:297–302. doi: 10.1073/pnas.1112840108 CrossRefPubMedGoogle Scholar
  7. Bellien J, Remy-Jouet I, Iacob M, Blot E, Mercier A, Lucas D, Dreano Y, Gutierrez L, Donnadieu N, Thuillez C, Joannides R (2012) Impaired role of epoxyeicosatrienoic acids in the regulation of basal conduit artery diameter during essential hypertension. Hypertension 60:1415–1421. doi: 10.1161/HYPERTENSIONAHA.112.201087 CrossRefPubMedGoogle Scholar
  8. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406. doi: 10.1146/annurev.arplant.57.032905.105346 CrossRefPubMedGoogle Scholar
  9. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF et al (2003) The complete genome sequence of the Arabidopsis and tomato pathogen P. syringae pv. tomato DC3000. Proc Natl Acad Sci USA 100:10181–10186. doi: 10.1073/pnas.1731982100 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carson-Jurica MA, Schrader WT, O’Malley BW (1990) Steroid receptor family: structure and functions. Endocr Rev 11:201–220. doi: 10.1210/edrv-11-2-201 CrossRefPubMedGoogle Scholar
  11. Clouse SD (2002) Brassinosteroids. Plant counterparts to animal steroid hormones? Vitam Horm 65:195–223. doi: 10.1016/S0083-6729(02)65065-4 CrossRefPubMedGoogle Scholar
  12. D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316. doi: 10.1016/j.pbi.2005.03.012 CrossRefPubMedGoogle Scholar
  13. De Leo M, De Tommasi N, Sanogo R, Autore G, Marzocco S, Pizza C, Morelli I, Braca A (2005) New pregnane glycosides from Caralluma dalzielii. Steroids 70:573–585. doi: 10.1016/j.steroids.2005.03.013 CrossRefPubMedGoogle Scholar
  14. Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445. doi: 10.1093/mp/ssn019 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Devkota KP, Lenta BN, Wansi JD, Choudhary MI, Kisangau DP, Samreen QN, Sewald N (2008) Bioactive 5α-pregnane-type steroidal alkaloids from Sarcococca hookeriana. J Nat Prod 71:1481–1484. doi: 10.1021/np800305b CrossRefPubMedGoogle Scholar
  16. Divi U, Rahman T, Krishna P (2010) Brassinosteroid-mediated abiotic stress tolerance in Arabidopsis involves interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151. doi: 10.1186/1471-2229-10-151 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L (2002) The phenylpropanoid pathway and plant defense: a genomics perspective. Mol Plant Pathol 3:371–390. doi: 10.1046/j.1364-3703.2002.00131.x CrossRefPubMedGoogle Scholar
  18. Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MK, Pelletier G, Vaudry H (2009) Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30:259–301. doi: 10.1016/j.yfrne.2009.05.006 CrossRefPubMedGoogle Scholar
  19. Eggert D, Naumann M, Reimer R, Voigt CA (2014) Nanoscale glucan polymer network causes pathogen resistance. Sci Rep 4:4159. doi: 10.1038/srep04159 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724. doi: 10.1094/MPMI-19-0711 CrossRefPubMedGoogle Scholar
  21. Gauthier A, Trouvelot S, Kelloniemi J, Frettinger P, Wendehenne D, Daire X, Joubert JM, Ferrarini A, Delledonne M, Flors V, Poinssot B (2014) The sulfated laminarin triggers a stress transcriptome before priming the SA- and ROS-dependent defenses during grapevine’s induced resistance against Plasmopara viticola. PLoS One 9:e88145. doi: 10.1371/journal.pone.0088145 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gerber IB, Dubery IA (2003) Fluorescence microplate assay for the detection of oxidative burst products in tobacco cell suspensions using 2′,7′-dichlorofluorescein. Meth Cell Sci 25:115–122CrossRefGoogle Scholar
  23. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. doi: 10.1146/annurev.phyto.43.040204.135923 CrossRefPubMedGoogle Scholar
  24. Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011. doi: 10.1016/S1097-2765(00)80265-8 CrossRefPubMedGoogle Scholar
  25. Granado J, Felix G, Boller T (1995) Perception of fungal sterols in plants: subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells. Plant Physiol 107:485–490. doi: 10.1104/pp.107.2.485 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guo M, Tian F, Wamboldt Y, Alfano JR (2009) The majority of the type III effector inventory of Pst pv. tomato DC3000 can suppress plant immunity. Mol Plant Microbe Interact 22:1069–1080. doi: 10.1094/MPMI-22-9-1069 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Iino M, Nomura T, Tamaki Y, Yamada Y, Yoneyama K, Takeuchi Y, Mori M, Asami T, Nakano T, Yokota T (2007) Progesterone: its occurrence in plants and involvement in plant growth. Phytochemistry 68:1664–1673. doi: 10.1016/j.phytochem.2007.04.002 CrossRefPubMedGoogle Scholar
  28. Iriti M, Faoro F (2009) Chemical diversity and defense metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399. doi: 10.3390/ijms10083371 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ishiga Y, Ishiga T, Uppalapati SR, Mysore KS (2011) Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions. Plant Meth 7:32. doi: 10.1186/1746-4811-7-32 CrossRefGoogle Scholar
  30. Janot MM, Cave A, Goutarel R (1960) Steroid alkaloids. Holaphyllamine and holamine, alkaloids from Holarrhena floribunda (G. Don) Dur. and Schinz. CR Hebd Séances Acad Sci 251:559–561Google Scholar
  31. Jin H, Yan Z, Nam KH, Li J (2007) Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol Cell 26:821–830. doi: 10.1016/j.molcel.2007.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86:41–49. doi: 10.1016/j.chemosphere.2011.08.048 CrossRefPubMedGoogle Scholar
  33. Karlova R, Boeren S, Russinova E, Aker J, Vervoort J, de Vries S (2006) The Arabidopsis somatic embryogenesis receptor-like kinase1 protein complex includes brassinosteroid-insensitive1. Plant Cell 18:626–638. doi: 10.1105/tpc.105.039412 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kemmerling B, Nürnberger T (2008) Brassinosteroid-independent functions of the BRI1-associated kinase BAK1/SERK3. Plant Signal Behav 3:116–118CrossRefPubMedPubMedCentralGoogle Scholar
  35. Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, Fritig B (2000) Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124:1027–1037. doi: 10.1104/pp.124.3.1027 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Klarzynski O, Descamps V, Plesse B, Yvin JC, Kloareg B, Fritig B (2003) Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol Plant Microbe Interact 16:115–122CrossRefPubMedGoogle Scholar
  37. Klemptner RL, Sherwood JS, Tugizimana F, Dubery IA, Piater LA (2014) Ergosterol, an orphan fungal microbe-associated molecular pattern (MAMP). Mol Plant Pathol 15:747–761. doi: 10.1111/mpp.12127 CrossRefPubMedGoogle Scholar
  38. Knoth C, Salus MS, Girke T, Eulgem T (2009) The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis. Plant Physiol 150:333–347. doi: 10.1104/pp.108.133678 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297. doi: 10.1007/s00344-003-0058-z CrossRefPubMedGoogle Scholar
  40. Kristiansen KA, Jensen PE, Møller IA, Schulz A (2009) Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H2DCFDA and confocal laser microscopy. Physiol Plant 136:369–383. doi: 10.1111/j.1399-3054.2009.01243.x CrossRefPubMedGoogle Scholar
  41. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331. doi: 10.1016/S1369-5266(02)00275-3 CrossRefPubMedGoogle Scholar
  42. Laquitaine L, Gomès E, François J, Marchive C, Pascal S, Hamdi S, Atanassova R, Delrot S, Coutos-Thévenot P (2006) Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. Mol Plant-Microbe Interact 19:1103–1112. doi: 10.1094/MPMI-19-1103 CrossRefPubMedGoogle Scholar
  43. Lee H, Chah OK, Sheen J (2011) Stem-cell-triggered immunity through CLV3p-FLS2 signalling. Nature 473:376–381. doi: 10.1038/nature09958 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔC(T) method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  45. Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: a multifaceted plant defense response. Mol Plant-Microbe Interact 24:183–193. doi: 10.1094/MPMI-07-10-0149 CrossRefPubMedGoogle Scholar
  46. Ma Y, Walker RK, Zhao Y, Berkowitz GA (2012) Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proc Natl Acad Sci USA 109:19852–19857. doi: 10.1073/pnas.1205448109 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629. doi: 10.1111/j.1364-3703.2012.00804.x CrossRefPubMedGoogle Scholar
  48. Ménard R, Alban S, de Ruffray P, Jamois F, Franz G, Fritig B, Yvin JC, Kauffmann S (2004) β-1,3 glucan sulfate, but not β-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell 16:3020–3032. doi: 10.1105/tpc.104.024968 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM (2010) Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22:973–990. doi: 10.1105/tpc.109.069658 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  51. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898. doi: 10.1046/j.1365-313X.2003.01675.x CrossRefPubMedGoogle Scholar
  52. Ni Z, Kim ED, Chen ZJ (2009) Chlorophyll and starch assays. Protoc Exch. doi: 10.1038/nprot.2009.12 Google Scholar
  53. Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647. doi: 10.1104/pp.109.139709 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Noutoshi Y, Okazaki M, Kida T, Nishina Y, Morishita Y, Ogawa T, Hideyuki S, Daisuke S, Yusuke J, Atsushi H, Yuji K, Ken S (2012) Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis. Plant Cell 24:3795–3804. doi: 10.1105/tpc.112.098343 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nürnberger T (1999) Signal perception in plant pathogen defense. Cell Mol Life Sci 55:167–182. doi: 10.1007/s000180050283 CrossRefPubMedGoogle Scholar
  56. Plancot B, Santaella C, Jaber R, Kiefer-Meyer MC, Follet-Gueye ML, Leprince J, Gattin I, Souc C, Driouich A, Vicré-Gibouin M (2013) Deciphering the responses of root border-like cells of Arabidopsis thaliana and Linum usitatissimum to pathogen-derived elicitors. Plant Physiol 163:1584–1597. doi: 10.1104/pp.113.222356 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Postel S, Küfner I, Beuter C, Mazzotta S, Schwedt A, Borlotti A, Halter T, Kemmerling B, Nürnberger T (2010) The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur J Cell Biol 89:169–174. doi: 10.1016/j.ejcb.2009.11.001 CrossRefPubMedGoogle Scholar
  58. Rhanier A, Darnet S, Bouvier F, Camara B, Bard M (2006) Molecular and enzymatic characterization of novel bifunctional 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases from Arabidopsis thaliana. J Biol Chem 281:27264–27277. doi: 10.1074/jbc.M604431200 CrossRefGoogle Scholar
  59. Robert S, Raikhel NV, Hicks GR (2009) Powerful partners: Arabidopsis and chemical genomics. Arabidopsis Book 7:e0109. doi: 10.1199/tab.0109 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rossard S, Gabriel Roblin G, Atanassova R (2010) Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues. J Exp Bot 61:1807–1816. doi: 10.1093/jxb/erq047 CrossRefPubMedGoogle Scholar
  61. Sanchez L, Courteaux B, Hubert J, Kauffman S, Renault JH, Clement C, Baillieul F, Dorey S (2012) Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic and necrotrophic pathogens that require different signalling pathways in Arabidopsis thaliana and highlight a central role for salicylic acid. Plant Physiol 160:1630–1641. doi: 10.1104/pp.112.201913 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Schreiber KJ, Ckurshumova W, Peek J, Desveaux D (2008) A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis. Plant J 54:522–531. doi: 10.1111/j.1365-313X.2008.03425.x CrossRefPubMedGoogle Scholar
  63. Schreiber KJ, Nasmith CG, Allard GC, Singh J, Subramaniam R, Desveaux D (2011) High-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat. Mol Plant Microbe Interact 24:640–648. doi: 10.1094/MPMI-09-10-0210 CrossRefPubMedGoogle Scholar
  64. Shah J (2005) Lipids, lipases and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43:229–260. doi: 10.1146/annurev.phyto.43.040204.135951 CrossRefPubMedGoogle Scholar
  65. Shi CL, Park HB, Lee JK, Ryu S, Ryu CM (2010) Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90–166 is through both auxin-dependent and independent signaling pathways. Mol Cells 29:251–258. doi: 10.1007/s10059-010-0032-0 CrossRefPubMedGoogle Scholar
  66. Simersky R, Novak O, Morris DA, Pouzar V, Strnad M (2009) Identification and quantification of several mammalian steroid hormones in plants by UPLC-MS/MS. J Plant Growth Regul 28:125–136. doi: 10.1007/s00344-009-9081-z CrossRefGoogle Scholar
  67. Takahashi D, Kawamura Y, Uemura M (2013) Detergent-resistant plasma membrane proteomes to elucidate microdomain functions in plant cells. Front Plant Sci 4:27. doi: 10.3389/fpls.2013.00027 PubMedPubMedCentralGoogle Scholar
  68. Thatcher LF, Anderson JP, Singh KB (2005) Plant defense responses: what have we learnt from Arabidopsis? Funct Plant Biol 32:1–19. doi: 10.1071/FP04135 CrossRefGoogle Scholar
  69. Thummel CS, Chory J (2002) Steroid signaling in plants and insects: common themes, different pathways. Genes Dev 16:3113–3129. doi: 10.1101/gad.1042102 CrossRefPubMedGoogle Scholar
  70. Tyburski J, Dunajska K, Tretyn A (2009) Reactive oxygen species localization in roots of Arabidopsis thaliana seedlings grown under phosphate deficiency. J Plant Growth Reg 59:27–36. doi: 10.1007/s10725-009-9385-9 CrossRefGoogle Scholar
  71. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. doi: 10.3389/fpls.2013.00356 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. doi: 10.1146/annurev.phyto.44.070505.143425 CrossRefPubMedGoogle Scholar
  73. Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280. doi: 10.1093/jxb/ert026 CrossRefPubMedGoogle Scholar
  74. Wang ZY (2012) Brassinosteroids modulate plant immunity at multiple levels. Proc Natl Acad Sci USA 109:7–8. doi: 10.1073/pnas.1118600109 CrossRefPubMedGoogle Scholar
  75. Wang X, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD (2008) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15:220–235. doi: 10.1016/j.devcel.2008.06.011 CrossRefPubMedGoogle Scholar
  76. Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326. doi: 10.1105/tpc.105.037523 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yao J, Withers J, He SY (2013) Pseudomonas syringae infection assays in Arabidopsis. Methods Mol Biol 1011:63–81. doi: 10.1007/978-1-62703-414-2_6 CrossRefPubMedGoogle Scholar
  78. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73. doi: 10.1177/108705719900400206 CrossRefPubMedGoogle Scholar
  79. Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605. doi: 10.1111/j.1365-313X.2006.02901.x CrossRefPubMedGoogle Scholar
  80. Zipfel C, Robatzek S (2010) Pathogen-associated molecular pattern-triggered immunity: veni, vidi...? Plant Physiol 154:551–554. doi: 10.1104/pp.110.161547 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767. doi: 10.1038/nature02485 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Abderrakib Zahid
    • 1
    • 6
  • Rim Jaber
    • 1
  • Ferdousse Laggoun
    • 1
  • Arnaud Lehner
    • 1
  • Isabelle Remy-Jouet
    • 2
  • Olivier Pamlard
    • 3
  • Sandra Beaupierre
    • 3
  • Jérome Leprince
    • 4
  • Marie-Laure Follet-Gueye
    • 1
  • Maïté Vicré-Gibouin
    • 1
  • Xavier Latour
    • 5
  • Vincent Richard
    • 2
  • Catherine Guillou
    • 3
  • Patrice Lerouge
    • 1
  • Azeddine Driouich
    • 1
  • Jean-Claude Mollet
    • 1
    • 7
    Email author return OK on get
  1. 1.Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, SFR Normandie VégétalRouenFrance
  2. 2.Normandie Univ, UniRouen, Laboratoire Nouvelles Cibles Pharmacologiques du Traitement de la Dysfonction Endothéliale et de l’Insuffisance Cardiaque, INSERM, IRIBRouenFrance
  3. 3.Institut de Chimie des Substances Naturelles, CNRS, LabEx LERMITGif-sur-YvetteFrance
  4. 4.Normandie Univ, UniRouen, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine INSERM, IRIBRouenFrance
  5. 5.Normandie Univ, UniRouen, IUT Evreux, Laboratoire de Microbiologie Signaux et Microenvironnement, SFR Normandie VégétalRouenFrance
  6. 6.SATT Nord, GIS PhyNoPi CS80699CalaisFrance
  7. 7.Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358Mont-Saint-AignanFrance

Personalised recommendations