Skip to main content
Log in

Comparative proteomic analysis of Chlamydomonas reinhardtii control and a salinity-tolerant strain revealed a differential protein expression pattern

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Proteins involved in membrane transport and trafficking, stress and defense, iron uptake and metabolism, as well as proteolytic enzymes, were remarkably up-regulated in the salinity-tolerant strain of Chlamydomonas reinhardtii.

Excessive concentration of NaCl in the environment can cause adverse effects on plants and microalgae. Successful adaptation of plants to long-term salinity stress requires complex cellular adjustments at different levels from molecular, biochemical and physiological processes. In this study, we developed a salinity-tolerant strain (ST) of the model unicellular green alga, Chlamydomonas reinhardtii, capable of growing in medium containing 300 mM NaCl. Comparative proteomic analyses were performed to assess differential protein expression pattern between the ST and the control progenitor cells. Proteins involved in membrane transport and trafficking, stress and defense, iron uptake and metabolism, as well as protein degradation, were remarkably up-regulated in the ST cells, suggesting the importance of these processes in acclimation mechanisms to salinity stress. Moreover, 2-DE-based proteomic also revealed putative salinity-specific post-translational modifications (PTMs) on several important housekeeping proteins. Discussions were made regarding the roles of these differentially expressed proteins and the putative PTMs in cellular adaptation to long-term salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2008a) Proteome analysis of potato under salt stress. J Proteome Res 7:4858–4868

    Article  CAS  PubMed  Google Scholar 

  • Aghaei K, Ehsanpour AA, Shah AH, Komatsu S (2008b) Proteome analysis of soybean hypocotyls and root under salt stress. Amino Acids 36:91–98

    Article  PubMed  Google Scholar 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98:529–539

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2003) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130:1443–1453

    Article  Google Scholar 

  • Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A (2013) Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J 73:240–249

    Article  CAS  PubMed  Google Scholar 

  • Bacha H, Ródenas R, López-Gómez E, García-Legaz MF, Nieves-Cordones M, Rivero RM, Martínez V, Botella MÁ, Rubio F (2015) High Ca2+ reverts the repression of high-affinity K+ uptake produced by Na+ in Solanum lycopersycum L. (var. microtom) plants. J Plant Physiol 180:72–79

    Article  CAS  PubMed  Google Scholar 

  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photo-synthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C(3) non-halophytes. Plant Physiol 95:628–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot 67:4611–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Guo A, Jin X, Yang Q, Wang D, Sun Y, Huang Q, Wang L, Peng C, Wang X (2015) The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress-based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila. Plant Sci 236:223–238

    Article  CAS  PubMed  Google Scholar 

  • Chua-on D, Proungvitaya T, Techasen A, Limpaiboon T, Roytrakul S, Wongkham S, Wongkham C, Somintara O, Sungkhamanon S, Proungvitaya S (2016) High expression of apoptosis-inducing factor, mitochondrion-associated 3 (AIFM3) in human cholangiocarcinoma. Tumor Biol 37:13659–13667

    Article  CAS  Google Scholar 

  • Chung E, Cho CW, So HA, Kang JS, Chung YS, Lee JH (2013) Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis. PLoS One 8:e66056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingo C, Lalanne E, Catalá MM, Pla E, Reig-Valiente JL, Talón M (2016) Physiological basis and transcriptional profiling of three salt-tolerant mutant lines of rice. Front Plant Sci 7:1462

    Article  PubMed  PubMed Central  Google Scholar 

  • El Rabey HA, Al-Malki AL, Abulnaja KO, Rohde W (2015) Proteome analysis for understanding abiotic stress (salinity and drought) tolerance in date palm (Phoenix dactylifera L.). Int. J Genomics 2015:407165

    Google Scholar 

  • Fan J, Zheng L (2017) Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation. J Biosci Bioeng 1723:30233–30235

    Google Scholar 

  • Glaesener AG, Merchant SS, Blaby-Haas CE (2013) Iron economy in Chlamydomonas reinhardtii. Front Plant Sci 4:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling network. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo R, Shi L, Yan C, Zhong X, Gu F, Liu Q, Xia X, Li H (2017) Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol 17:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia YL, Chen H, Zhang C, Gao LJ, Wang XC, Qiu LL, Wu JF (2016) Proteomic analysis of halotolerant proteins under high and low salt stress in Dunaliella salina using two-dimensional differential in-gel electrophoresis. Genet Mol Biol 39:239–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (2001) Salt tolerance of crops according to three classification methods and examination of some hypothesis about salt tolerance. Agric Water Manage 47:1–8

    Article  Google Scholar 

  • Kosova K, Vitamvas P, Prasil IT, Renaut J (2011) Plant proteome changes under abiotic stress contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322

    Article  CAS  PubMed  Google Scholar 

  • Lehtimäki N, Lintala M, Allahverdiyeva Y, Aro EM, Mulo P (2010) Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer. J Plant Physiol 167:1018–1022

    Article  PubMed  Google Scholar 

  • Li W, Zhang C, Lu Q, Wen X, Lu C (2011) The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol 168:1743–1752

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Yang H, Wu X, Guo K, Li J (2015) Some aspects of salinity responses in peppermint (Mentha × piperita L.) to NaCl treatment. Protoplasma 252:885–899

    Article  CAS  PubMed  Google Scholar 

  • Logg K, Warringer J, Hashemi SH, Käll M, Blomberg A (2008) The sodium pump Ena1p provides mechanistic insight into the salt sensitivity of vacuolar protein sorting mutants. Biochim Biophys Acta 1783:974–984

    Article  CAS  PubMed  Google Scholar 

  • Long JC, Sommer F, Allen MD, Lu S-F, Merchant SS (2008) FER1 and FER2 encoding two ferritin complexes in Chlamydomonas reinhardtii chloroplasts are regulated by iron. Genetics 179:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahong B, Roytrakul S, Phaonaklop N, Wongratana J, Yokthongwattana K (2012) Proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins. Planta 235:499–511

    Article  CAS  PubMed  Google Scholar 

  • Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M (2011) Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot 62:2797–2813

    Article  CAS  PubMed  Google Scholar 

  • Martinière A, Li X, Runions J, Lin J, Maurel C, Luu DT (2012) Salt stress triggers enhanced cycling of Arabidopsis root plasma-membrane aquaporins. Plant Signal Behav 7:529–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Murad AM, Molinari HB, Magalhães BS, Franco AC, Takahashi FS, de Oliveira NG, Franco OL, Quirino BF (2014) Physiological and proteomic analyses of Saccharum spp. grown under salt stress. PLoS One 9:e98463

    Article  PubMed  PubMed Central  Google Scholar 

  • Neale PJ, Melis A (1989) Salinity-stress enhances photoinhibition of photosynthesis in Chlamydomonas reinhardtii. J Plant Physiol 134:619–622

    Article  CAS  Google Scholar 

  • Neelam S, Subramanyam R (2013) Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells. J Photochem Photobiol B 124:63–70

    Article  CAS  PubMed  Google Scholar 

  • Ngara R, Ndimba R, Jensen JB, Jensen ON, Ndimb B (2012) Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J Proteom 75:4139–4150

    Article  CAS  Google Scholar 

  • Nieves-Cordones M, Miller A, Alemán F, Martínez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol Biol 68:521–532

    Article  CAS  PubMed  Google Scholar 

  • Paemanee A, Wikan N, Roytrakul S, Smith DR (2016) Application of GelC–MS/MS to proteomic profiling of Chikungunya virus infection: preparation of peptides for analysis. Methods Mol Biol 1426:179–193

    Article  PubMed  Google Scholar 

  • Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    Article  CAS  PubMed  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteom 8:2676–2686

    Article  CAS  Google Scholar 

  • Perrineau M-M, Zelzion E, Gross J, Price DC, Boyd J, Bhattacharya D (2014) Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinahrdtii. Environ Microbiol 16:1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Pi E, Qu L, Hu J, Huang Y, Qiu L, Lu H, Jiang B, Liu C, Peng T, Zhao Y, Wang H, Tsai SN, Ngai S, Du L (2016) Mechanisms of soybean roots’ tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Mol Cell Proteom 15:266–288

    Article  CAS  Google Scholar 

  • Polle JEW, Benemann JR, Tanaka A, Melis A (2000) Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii: dependence on carbon source. Planta 211:335–344

    Article  CAS  PubMed  Google Scholar 

  • Pou A, Jeanguenin L, Milhiet T, Batoko H, Chaumont F, Hachez C (2016) Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. Plant Mol Biol 92:731–744

    Article  CAS  PubMed  Google Scholar 

  • Ryu JY, Suh KH, Chung YH, Park YM, Chow WS, Park YI (2003) Cytochrome c oxidase of the cyanobacterium Synechocystis sp. PCC 6803 protects photosynthesis from salt stress. Mol Cells 16:74–77

    CAS  PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Shabala S, Sahabala L, van Volkenburgh E (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30:507–514

    Article  CAS  Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira J, Carvalho F (2016) Proteomics, photosynthesis and salt resistance in crops: an integrative view. J Proteom 143:24–35

    Article  CAS  Google Scholar 

  • Sun Y, Kong X, Li C, Liu Y, Ding Z (2015) Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions. PLoS One 10:e0124032

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueda M, Tsutsumi N, Fujimoto M (2016) Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana. Biochem Biophys Res Commun 474:742–746

    Article  CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Pantoja O (2014) Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. J Proteom 111:113–127

    Article  CAS  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hu B, Du S, Gao S, Chen X, Chen D (2016) Proteomic analyses reveal the mechanism of Dunaliella salina Ds-26-16 gene enhancing salt tolerance in Escherichia coli. PLoS One 11:e0153640

    Article  PubMed  PubMed Central  Google Scholar 

  • Wongratana J, Juntadech T, Sereeruk C, Angsuthanasombat C, Yokthongwattana K (2013) Generation and characterization of His-tagged-PsbA-expressing transformants of Chlamydomonas reinhardtii that are capable of photoautotrophic growth. J Appl Phycol 25:445–452

    Article  CAS  Google Scholar 

  • Xia Z, Wei Y, Sun K, Wu J, Wang Y, Wu K (2013) The maize AAA-type protein SKD1 confers enhanced salt and drought stress tolerance in transgenic tobacco by interacting with Lyst-interacting protein 5. PLoS One 8:e69787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Ding Y, Jiang Q, Wang F, Sun J, Zhu C (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36:235–242

    Article  CAS  PubMed  Google Scholar 

  • Yokthongwattana C, Mahong B, Roytrakul S, Phaonaklop N, Narangajavana J, Yokthongwattana K (2012) Proteomic analysis of salinity-stressed Chlamydomonas reinhardtii revealed differential suppression and induction of a large number of important housekeeping proteins. Planta 235:649–659

    Article  CAS  PubMed  Google Scholar 

  • Yousfi S, Wissal M, Mahmoudi H, Abdelly C, Gharsalli M (2007) Effect of salt on physiological responses of barley to iron deficiency. Plant Physiol Biochem 45:309–314

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012) Mechanisms of plant salt responses: insights from proteomics. J Proteome Res 11:49–67

    Article  PubMed  Google Scholar 

  • Zheng Y, Liao C, Zhao S, Wang C, Guo Y (2017) The glycosyltransferase QUA1 regulates chloroplast-associated calcium signaling during salt and drought stress in Arabidopsis. Plant Cell Physiol 58:329–341

    PubMed  Google Scholar 

Download references

Acknowledgements

SS was supported by Graduate School, Kasetsart University. This work was conducted with financial support in part by the Kasetsart University Research and Development Institute Grant (Mor-Vor 9.55), Office of the Higher Education Commission and Thailand Research Fund (TRF) Grant No. MRG5580171 to CY. KY thanks TRF and Mahidol University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chotika Yokthongwattana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2017_2734_MOESM1_ESM.tif

Supplement Figure 1 Diagram showing the process of generation of salt-adapted strain of C. reinhardtii. CC-503 cells were initially grown in normal TAP medium. At the mid-logarithmic phase, cells were aliquoted into 2 fractions. One fraction was inoculated into normal TAP medium, serving as control while another was inoculated into TAP medium supplemented with 200 mM NaCl. After cells in the TAP + 200 mM NaCl started to regrown for a few generations, they were challenged with higher concentration of NaCl (250 mM). Once the cells were acclimated and able to grow for a few generations, they were challenged again with 300 mM NaCl. Cells acclimated to this 300 mM NaCl is called the “salinity-tolerant” strain or ST. It must be noted that the concentration of 300 mM NaCl was the maximum concentration that allowed consistent growth of the alga. (TIFF 8235 kb)

Supplementary material 2 (DOCX 23 kb)

Supplementary material 3 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sithtisarn, S., Yokthongwattana, K., Mahong, B. et al. Comparative proteomic analysis of Chlamydomonas reinhardtii control and a salinity-tolerant strain revealed a differential protein expression pattern. Planta 246, 843–856 (2017). https://doi.org/10.1007/s00425-017-2734-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2734-4

Keywords

Navigation