Skip to main content
Log in

Identification and functional analysis of new peroxygenases in oat

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Two new peroxygenases for the biosynthesis of epoxy fatty acids in oat were identified and functionally analyzed by heterologous expression along with rationally designed site-directed mutagenesis.

Oat (Avena sativa L.) contains a large family of peroxygenases, a group of heme-containing monooxygenases catalyzing hydroperoxide-dependent epoxidation of unsaturated fatty acids. Here, we report identification and functional analysis of two new peroxygenases AsPXG2 and AsPXG3 from oat. The open reading frame (ORF) of AsPXG2 contains 702 bps encoding a polypeptide of 233 amino acids, while the ORF of AsPXG3 is 627 bps coding for 208 amino acids. Both AsPXG2 and AsPXG3 comprise a single transmembrane domain, conserved histidines for heme binding and a conserved EF-hand motif for calcium binding, but they only share about 50% amino acid sequence identity with each other. When expressed in Escherichia coli and Pichia pastoris, AsPXG3 showed high epoxidation activity, while AsPXG2 exhibited no activity in E. coli and low activity in P. pastoris. AsPXG3 could effectively epoxidize both mono- and polyunsaturated fatty acids with linolenic acid being the most preferred substrate. Site-directed mutagenesis was employed to investigate the structure–function relationship of oat peroxygenase on 12 conserved residues of AsPXG3. Replacement of two conserved histidines, the ligands to the prosthetic heme group of the peroxygenase, by alanine resulted in complete loss of activity. Substitution of three conserved residues surrounding the two histidines resulted in reduction of the enzymatic activity by more than 80%. These results imply that these conserved residues might be located in or near the catalytic pocket, where the two histidine residues coordinate the heme group and the surrounding residues define the shape and size of the pocket for interaction with the heme as well as two substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PXG:

Peroxygenase

References

Download references

Acknowledgements

The authors would like to thank Xi Xie for her help in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Qiu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaragama, I., Meesapyodsuk, D., Beattie, A.D. et al. Identification and functional analysis of new peroxygenases in oat. Planta 246, 711–719 (2017). https://doi.org/10.1007/s00425-017-2729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2729-1

Keywords

Navigation