Advertisement

Planta

, Volume 246, Issue 2, pp 313–321 | Cite as

Variations on a theme in fruit development: the PLE lineage of MADS-box genes in tomato (TAGL1) and other species

  • Danielle C. Garceau
  • Megan K. Batson
  • Irvin L. PanEmail author
Review

Abstract

Main conclusion

This article focuses on the role of TOMATO AGAMOUS-LIKE 1 (TAGL1) on a wide range of ripening functions in tomato. We also examine orthologs of this gene in related species that produce different fruit types and discuss some evolutionary implications.

TOMATO AGAMOUS-LIKE 1 (TAGL1) is a MADS-box transcription factor gene that belongs to the PLENA (PLE) lineage within the AGAMOUS (AG) clade. The most well-studied genes in this lineage are the SHATTERPROOF (SHP) genes in Arabidopsis, known to be involved in dehiscence zone formation during silique development. In tomato, TAGL1 has been shown to control several aspects of tomato fruit ripening. Most notably, carotenoid synthesis seems to be controlled by TAGL1, likely via the ethylene synthesis and signaling pathway and in combination with RIPENING INHIBITOR (RIN). In addition, TAGL1 regulates genes involved in cell cycle regulation, flavonoid and lignin biosynthesis, and cuticle development. We discuss many of the genes in these different pathways that are likely controlled by TAGL1, directly or indirectly. We also examine the relationship of TAGL1 with known and putative interaction partners. PLE lineage genes have also been examined in other species such as Antirrhinum, Petunia, and Nicotiana and provide an interesting example of conservation and diversification of function in species that produce very different types of fleshy and dry fruits. The control of lignification may be a common mechanism for this group of genes. Lastly, we discuss future work needed to elucidate the TAGL1 regulatory pathway in tomato and to help better understand the functional diversification of genes in this lineage in related species.

Keywords

Ripening Ethylene Carotenoids Transcription factor 

References

  1. Arnaud N, Lawrenson T, Ostergaard L, Sablowski R (2011) The same regulatory point mutation changed seed-dispersal structures in evolution and domestication. Curr Biol 21:1215–1219CrossRefPubMedGoogle Scholar
  2. Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto Pde B, Angenent GC, de Maagd RA (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24:4437–4451CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72:85–95CrossRefPubMedGoogle Scholar
  4. Bremer B, Eriksson O (1992) Evolution of fruit characters and dispersal modes in the tropical family Rubiaceae. Biol J Linn Soc 47:79–95CrossRefGoogle Scholar
  5. Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B (2005) Evolution in action: following function in duplicated floral homeotic genes. Curr Biol 15:1508–1512CrossRefPubMedGoogle Scholar
  6. Cheniclet C, Rong WY, Causse M, Frangne N, Bolling L, Carde JP, Renaudin JP (2005) Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol 139:1984–1994CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dave YS, Patel ND, Rao KS (1981) Structural design of the developing fruit of Nicotiana tabacum. Phyton 21:63–71Google Scholar
  8. Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dinneny JR, Weigel D, Yanofsky MF (2005) A genetic framework for fruit patterning in Arabidopsis thaliana. Development 132:4687–4696CrossRefPubMedGoogle Scholar
  10. Dreni L, Kater MM (2014) MADS reloaded: evolution of the AGAMOUS subfamily genes. New Phytol 201:717–732CrossRefPubMedGoogle Scholar
  11. Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ferrándiz C, Fourquin C (2014) Role of the FUL-SHP network in the evolution of fruit morphology and function. J Exp Bot 65:4505–4513CrossRefPubMedGoogle Scholar
  13. Ferrándiz C, Pelaz S, Yanofsky MF (1999) Control of carpel and fruit development in Arabidopsis. Annu Rev Biochem 68:321–354CrossRefPubMedGoogle Scholar
  14. Fourquin C, Ferrándiz C (2012) Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. Plant J 71:990–1001CrossRefPubMedGoogle Scholar
  15. Fourquin C, del Cerro C, Victoria FC, Vialette-Guiraud A, de Oliveira AC, Ferrándiz C (2013) A change in SHATTERPROOF protein lies at the origin of a fruit morphological novelty and a new strategy for seed dispersal in medicago genus. Plant Physiol 162:907–917CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fujisawa M, Shima Y, Nakagawa H, Kitagawa M, Kimbara J, Nakano T, Kasumi T, Ito Y (2014) Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell 26:89–101CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gimenez E, Pineda B, Capel J, Anton MT, Atares A, Perez-Martin F, Garcia-Sogo B, Angosto T, Moreno V, Lozano R (2010) Functional analysis of the Arlequin mutant corroborates the essential role of the Arlequin/TAGL1 gene during reproductive development of tomato. PLoS One 5:e14427CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gimenez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R, Angosto T (2015) Transcriptional activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 gene is required for cuticle development of tomato fruit. Plant Physiol 168:1036–1048CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gimenez E, Castaneda L, Pineda B, Pan IL, Moreno V, Angosto T, Lozano R (2016) TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Mol Biol 91:513–531CrossRefPubMedGoogle Scholar
  21. Gramzow L, Theissen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11:1–11CrossRefGoogle Scholar
  22. Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the arabidopsis floral homeotic gene APETALA1. Cell 76:131–143CrossRefPubMedGoogle Scholar
  23. Heijmans K, Ament K, Rijpkema AS, Zethof J, Wolters-Arts M, Gerats T, Vandenbussche M (2012) Redefining C and D in the petunia ABC. Plant Cell 24:2305–2317CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF (2006) Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol 23:2245–2258CrossRefPubMedGoogle Scholar
  25. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529CrossRefPubMedGoogle Scholar
  26. Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60:1081–1095CrossRefPubMedGoogle Scholar
  27. Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59CrossRefPubMedGoogle Scholar
  28. Knapp S (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Exp Bot 53:2001–2022CrossRefPubMedGoogle Scholar
  29. Knapp S, Litt A (2013) Fruit-an angiosperm innovation. In: Seymour GB, Poole M, Giovannoni JJ, Tucker GA (eds) The molecular biology and biochemistry of fruit ripening. Wiley-Blackwell, New York, pp 28–42Google Scholar
  30. Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011–1023CrossRefPubMedPubMedCentralGoogle Scholar
  31. Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L (2008) Interaction study of MADS-domain proteins in tomato. J Exp Bot 59:2253–2265CrossRefPubMedGoogle Scholar
  32. Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770CrossRefPubMedGoogle Scholar
  33. Liljegren SJ, Roeder AH, Kempin SA, Gremski K, Ostergaard L, Guimil S, Reyes DK, Yanofsky MF (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116:843–853CrossRefPubMedGoogle Scholar
  34. Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495CrossRefPubMedGoogle Scholar
  35. Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ (2011) The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol 157:1568–1579CrossRefPubMedPubMedCentralGoogle Scholar
  36. Olmstead RG, Bohs L, Migid HA, Santiago-Valentín E, Garcia VF, Collier SM (2008) A molecular phylogeny of the Solanaceae. Taxon 57:1159–1181Google Scholar
  37. Pabon-Mora N, Litt A (2011) Comparative anatomical and developmental analysis of dry and fleshy fruits of Solanaceae. Am J Bot 98:1415–1436CrossRefPubMedGoogle Scholar
  38. Pabon-Mora N, Wong GK, Ambrose BA (2014) Evolution of fruit development genes in flowering plants. Front Plant Sci 5:300PubMedPubMedCentralGoogle Scholar
  39. Pan IL, McQuinn R, Giovannoni JJ, Irish VF (2010) Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. J Exp Bot 61:1795–1806CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pineda B, Gimenez-Caminero E, Garcia-Sogo B, Anton MT, Atares A, Capel J, Lozano R, Angosto T, Moreno V (2010) Genetic and physiological characterization of the arlequin insertional mutant reveals a key regulator of reproductive development in tomato. Plant Cell Physiol 51:435–447CrossRefPubMedGoogle Scholar
  41. Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88CrossRefPubMedGoogle Scholar
  42. Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E (1994) Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6:163–173CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rajani S, Sundaresan V (2001) The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol 11:1914–1922CrossRefPubMedGoogle Scholar
  44. Roeder AH, Ferrándiz C, Yanofsky MF (2003) The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol 13:1630–1635CrossRefPubMedGoogle Scholar
  45. Sato T, Theologis A (1989) Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA 86:6621–6625CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shima Y, Kitagawa M, Fujisawa M, Nakano T, Kato H, Kimbara J, Kasumi T, Ito Y (2013) Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN. Plant Mol Biol 82:427–438CrossRefPubMedGoogle Scholar
  47. Spence J, Vercher Y, Gates P, Harris N (1996) ‘Pod shatter’ in Arabidopsis thaliana, Brassica napus and B. juncea. J Microsc 181:195–203CrossRefGoogle Scholar
  48. Spujt RW (1994) A systematic treatment of fruit types. Mem NY Bot Gard 70:1–81Google Scholar
  49. Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16(Suppl):S181–S189CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tigchelaar EC, McGlasson WB, Buescher RW (1978) Genetic regulation of tomato fruit ripening. HortScience 13:508–513Google Scholar
  51. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346CrossRefPubMedGoogle Scholar
  52. Vrebalov J, Pan IL, Arroyo AJ, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF (2009) Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. Plant Cell 21:3041–3062CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Danielle C. Garceau
    • 1
  • Megan K. Batson
    • 2
  • Irvin L. Pan
    • 3
    Email author
  1. 1.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  2. 2.MassBiologicsBostonUSA
  3. 3.Department of BiologyStonehill CollegeEastonUSA

Personalised recommendations