Skip to main content
Log in

Zebra chip disease enhances respiration and oxidative stress of potato tubers (Solanum tuberosum L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The physiological phenotype of potato tubers afflicted by zebra chip disease is characterized by increased oxidative stress metabolism and upregulation of systems for its mitigation.

Starch catabolism and extensive buildup of reducing sugars render potatoes infected with zebra chip (ZC) pathogen (Candidatus Liberibacter solanacearum) unsuitable for fresh market and processing into chips/fries. Here we show that the disease inflicts considerable oxidative stress, which likely constitutes a substantial sink for metabolic energy, resulting in increased respiration rate of afflicted tubers. In contrast to healthy tubers, tissue from diseased tubers had greater ability to reduce 2,3,5-triphenyl-tetrazolium chloride to formazan, indicating enhanced dehydrogenase activity, probable disease-induced changes in cellular redox potential, and increased respiratory activity. The respiration rate of diseased tubers (cv. Atlantic) was 2.4-fold higher than healthy tubers and this correlated with increased activities of glucose-6-phosphate and 6-phosphogluconate dehydrogenases, key enzymes responsible for synthesis of cytosolic reducing equivalents. Wound-induced NADPH oxidase activity was greater for ZC than healthy tubers, but the resulting superoxide was rapidly catabolized by higher superoxide dismutase activity in ZC tubers. Peroxidase, catalase, glutathione reductase and ascorbate free radical reductase activities were also higher in diseased tubers, as was malondialdehyde, a biomarker of peroxidative damage and oxidative stress. Upregulation of the glutathione–ascorbate pathway is a direct response to (and indicator of) oxidative stress, which consumes reducing equivalents (NADPH) to catabolize reactive oxygen species and maintain cellular redox homeostasis. ZC disease substantially altered the oxidative metabolism of tubers, resulting in a physiological phenotype defined by metabolic changes directed toward mitigating oxidative stress. Paradoxically, the increased respiration rate of ZC tubers, which fuels the metabolic pathways responsible for attenuating oxidative stress, likely also contributes to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AFR:

Ascorbate free radical reductase

ANOVA:

Analysis of variance

AsA:

Ascorbic acid

CAT:

Catalase

CLso:

Candidatus Liberibacter solanacearum

DPI:

Diphenylene iodonium chloride

G6PDH:

Glucose-6-phosphate dehydrogenase

6PGDH:

6-Phosphogluconate dehydrogenase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

NOX:

NADPH oxidase

POX:

Peroxidase

PPP:

Pentose phosphate pathway

SOD:

Superoxide dismutase

rboh:

Respiratory burst oxidase homologue

ROS:

Reactive oxygen species

SP:

Starch phosphorylase (α-1,4-glucan phosphorylase)

TTC:

2,3,5-Tetrazolium chloride

ZC:

Zebra chip

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Alvarado VY, Odokonyero D, Duncan O, Mirkov TE, Scholthof HB (2012) Molecular and physiological properties associated with zebra complex disease in potatoes and its relation with Candidatus Liberibacter contents in psyllid vectors. PLoS One 7(5):e37345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht, pp 123–150

    Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Amtzen CJ (eds) Photoinhibition (topics in photosynthesis), vol 9. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Physiol 141:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian B, Pogozelski WK, Tullius TD (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci USA 95:9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signaling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    Article  CAS  Google Scholar 

  • Bernards MA, Summerhurst DK, Razem FA (2004) Oxidases, peroxidases and hydrogen peroxide: the suberin connection. Phytochemistry 3:113–126

    Article  CAS  Google Scholar 

  • Borraccino G, Dipierro S, Arrigoni O (1986) Purification and properties of ascorbate free-radical reductase from potato tubers. Planta 167:521–526

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC (2014) Postharvest storage and physiology. In: Navarre R, Pavek MJ (eds) The potato: botany, production and uses. CAB International, Boston, MA, pp 255–271

    Google Scholar 

  • Bowler C, Camp WV, Montagu MV, Inzé D, Asada K (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breusegem FV, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchman JL, Heilman BE, Munyaneza JE (2011) Effects of Bactericera cockerelli (Hemiptera: Triozidae) density on zebra chip potato disease incidence, potato yield, and tuber processing quality. J Econ Entomol 104:1783–1792

    Article  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen S, Schopfer P (1999) Hydroxyl-radical production in physiological reactions: a novel function of peroxidases. Eur J Biochem 260:726–735

    Article  CAS  PubMed  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Crosslin J, Munyaneza J, Brown J, Liefting L (2010) A history in the making: potato zebra chip disease associated with a new psyllid-borne bacterium-A tale of striped potatoes. Online APSnet Featur. doi:10.1094/APSnetFeature-2010-0110

    Google Scholar 

  • Crosslin JM, Hamm PB, Eggers JE, Rondon SI, Sengoda VG, Munyaneza JE (2012) First report of zebra chip disease and Candidatus Liberibacter solanacearum on potatoes in Oregon and Washington State. Plant Dis 96:452

    Article  Google Scholar 

  • Dalton DA, Sterling A, Russell SA, Hanus FJ, Pascoet GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci USA 83:3811–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly JM (1976) Carbon balances of diseased plants: Changes in respiration, photosynthesis and translocation. In: Heitefuss R, Williams PH (eds) Encyclopedia of plant physiology: physiological plant pathology, vol 4. Springer, Berlin, pp 450–474

    Chapter  Google Scholar 

  • De Leonardis S, De Lorenzo G, Borraccino G, Dipierro S (1995) A specific ascorbate free radical reductase isozyme participates in the regeneration of ascorbate for scavenging toxic oxygen species in potato tuber mitochondria. Plant Physiol 109:847–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dikalov S, Nazarewicz R, Panov A, Harrison DG, Dikalova A (2011) Crosstalk between mitochondrial ROS and NADPH oxidases in cardiovascular and degenerative diseases: application of mitochondria targeted antioxidants. Free Radic Biol Med 51:S85–S86

    Article  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Fletcher BL, Dillard CJ, Tappel A (1973) Measurement of fluorescent lipid peroxidation products in biological systems. Anal Biochem 52:1–9

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Gabrielson J, Hart M, Jarelov A, Kuhn I, McKenzie D, Mollby R (2002) Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J Microbiol Meth 50:63–73

    Article  CAS  Google Scholar 

  • Gosling PG, Ross JD (1980) Pentose phosphate metabolism during dormancy breakage in Corylus avellana L. Planta 148:362–366

    Article  CAS  PubMed  Google Scholar 

  • Goud PB, Kachole MS (2011) Effect of exogenous hydrogen peroxide on peroxidase and polyphenol oxidase activities in Cajanus cajan (L) Millsp. detached leaves. Int J Curr Res 3:61–65

    Google Scholar 

  • Greenway G (2014) Economic impact of zebra chip control costs on grower returns in seven US states. Am J Potato Res 91:714–719

    Article  Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress: induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants. Plant Physiol 103:1067–1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Hachiya T, Terashima I, Noguchi K (2007) Increase in respiratory cost at high growth temperature is attributed to high protein turnover cost in Petunia hybrida petals. Plant Cell Environ 30:1269–1283

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Oxygen free radical and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246:501–514

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307:108–112

    Article  CAS  PubMed  Google Scholar 

  • Hauschild R, von Schaewen A (2003) Differential regulation of glucose-6-phosphate dehydrogenase isoenzyme activities in potato. Plant Physiol 133:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Yoshikawa A, Kasai T, Watanabe T (1999) Effect of 2-hexenal on the lipid peroxidation of primary cultured rat hepatocytes. J Health Sci 45:384–390

    Article  CAS  Google Scholar 

  • Isherwood FA (1973) Starch-sugar interconversion in Solanum tuberosum. Phytochemistry 12:2579–2591

    Article  CAS  Google Scholar 

  • Knowles NR (1987) Mobilization of seedpiece nitrogen during plant growth from aged potato (Solanum tuberosum L.) seed-tubers. Ann Bot 59:359–367

    Article  CAS  Google Scholar 

  • Konze JR, Elstner EF (1978) Ethane and ethylene formation by mitochondria as indication of aerobic lipid degradation in response to wounding of plant tissue. Biochim Biophys Acta 528:213–221

    Article  CAS  PubMed  Google Scholar 

  • Kosuge T, Kimpel JA (1981) Energy use and metabolic regulation in plant–pathogen interaction. In: Ayres PG (ed) Effects of disease on the physiology of the growing plant. Cambridge University Press, USA, p 30

    Google Scholar 

  • Kreslavski VD, Los DA, Allakhverdiev SI, Kuznetsov V (2012) Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59:141–154

    Article  CAS  Google Scholar 

  • Kumar GNM, Knowles NR (1993) Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato seed-tubers. Plant Physiol 102:115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar GNM, Knowles NR (1996) Oxidative stress results in increased sinks for metabolic energy during aging and sprouting of potato seed-tubers. Plant Physiol 112:1301–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar GNM, Iyer S, Knowles NR (2007) Strboh A homologue of NADPH oxidase regulates wound-induced oxidative burst and facilitates wound-healing in potato tubers. Planta 227:25–36

    Article  CAS  PubMed  Google Scholar 

  • Kumar GNM, Lulai EC, Suttle JC, Knowles NR (2010) Age-induced loss of wound-healing ability in potato tubers is partly regulated by ABA. Planta 232:1433–1445

    Article  CAS  PubMed  Google Scholar 

  • Kumar GNM, Knowles LO, Knowles NR (2015) Zebra chip disease decreases tuber (Solanum tuberosum L.) protein content by attenuating protease inhibitor levels and increasing protease activities. Planta 242:1153–1166

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Williams CE, Nemacheck JA, Wang H, Subramanyam S, Zheng C, Chen MS (2010) Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol 152:985–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin SB, Shriner DS (1980) Allocation of resources to defense and repair. In: Horsfall JG, Cowling EB (eds) Plant disease: an advanced treatise. How plants defend themselves. Academic Press, New York, pp 407–428

    Chapter  Google Scholar 

  • Mikitzel LJ, Knowles NR (1989) Polyamine metabolism of potato seed-tubers during long-term storage and early sprout development. Plant Physiol 91:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millerd A, Scott KJ (1962) Respiration of the diseased plant. Annu Rev Plant Physiol 13:559–574

    Article  CAS  Google Scholar 

  • Miura Y, Yoshioka H, Doke N (1995) An autophotographic determination of the active oxygen generation in potato tuber discs during hypersensitive response to fungal infection or elicitor. Plant Sci 105:45–52

    Article  CAS  Google Scholar 

  • Miyake C, Asada K (1994) Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol 35:539–549

    Article  CAS  Google Scholar 

  • Munyaneza JE (2012) Zebra chip disease of potato: biology, epidemiology, and management. Am J Potato Res 89:329–350

    Article  Google Scholar 

  • Murphy MP (2008) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed Central  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Ohara-takada A, Matsuura-endo C, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T, Yamauchi H, Mori M (2005) Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Biosci Biotechnol Biochem 69:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Parker JK, Balagiannis DP, Higley J, Smith G, Wedzicha BL, Mottram DS (2012) Kinetic model for the formation of acrylamide during the finish-frying of commercial French fries. J Agric Food Chem 60:9321–9331

    Article  CAS  PubMed  Google Scholar 

  • Petrov VD, van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants 2012:pls014. doi:10.1093/aobpla/pls014

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8:1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Préstamo G, Manzano P (1993) Peroxidases of selected fruits and vegetables and the possible use of ascorbic acid as an antioxidant. HortScience 28:48–50

    Google Scholar 

  • Rashed A, Wallis CM, Paetzold L, Workneh F, Rush CM (2013) Zebra chip disease and potato biochemistry: tuber physiological changes in response to ‘Candidatus Liberibacter solanacearum’ infection over time. Phytopathology 103:419–426

    Article  CAS  PubMed  Google Scholar 

  • Robinson DS, Bretherickand MR, Donnelly JK (1989) Heat stability and isoenzyme composition of peroxidases in Ohane grapes. Int J Food Sci Technol 24:613–618

    Article  CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano S, Miyake C, Mikami B, Asada K (1995) Molecular characterization of monodehydroascorbate radical reductase from cucumber highly expressed in Escherichia coli. J Biol Chem 270:21354–21361

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:453–462

    Article  Google Scholar 

  • Segal AW, Abo A (1993) The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 18:43–47

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. doi:10.1155/2012/217037

    Article  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821

    Article  CAS  PubMed  Google Scholar 

  • Steup M (1990) Starch degrading enzymes. In: Lea PJ (ed) Methods in plant biochemistry, vol 3. Academic Press, New York, pp 103–128

    Google Scholar 

  • Stuehr DJ, Fasehun OA, Kwon NS (1991) Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J 5:98–103

    CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DR, Shuman JL, Luo X, Shah J, Schlauch K, Shulaev V, Mittler R (2013) Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25:3553–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swisher KD, Munyaneza JE (2015) Zebra chip: what is the risk of disease transmission through potato tubers? In: Proceedings of the Washington-Oregon potato conference, Kennewick, pp 71–75

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Morales J, Sánchez-Rodríguez C, Molina A, Dangl JL (2013) Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G-protein. MPMI 26:686–694

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397

    Article  CAS  PubMed  Google Scholar 

  • Wallis CM, Chen J, Civerolo CJ (2012) Zebra chip-diseased potato tubers are characterized by increased levels of host phenolics, amino acids, and defense-related proteins. Physiol Mol Plant Pathol 78:66–72

    Article  CAS  Google Scholar 

  • Wallis CM, Rashed A, Wallingford AK, Paetzold L, Workneh F, Rush CM (2014) Similarities and differences in physiological responses to ‘Candidatus Liberibacter solanacearum’ infection among different potato cultivars. Phytopathology 104:126–133

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ma Y, Huang C, Li J, Wan Q, Yurong B (2008) Involvement of glucose-6-phosphate dehydrogenase in reduced glutathione maintenance and hydrogen peroxide signal under salt stress. Plant Signal Behav 3:394–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, El-Shetehy M, Shine MB, Yu K, Navarre D, Wendehenne D, Kachroo A, Kachroo P (2014) Free radicals mediate systemic acquired resistance. Cell Rep 7:348–355

    Article  PubMed  Google Scholar 

  • Weeda SM, Kumar GNM, Knowles NR (2010) Correlative changes in proteases and protease inhibitors during mobilization of protein from potato (Solanum tuberosum L.) seed-tubers. Funct Plant Biol 37:32–42

    Article  CAS  Google Scholar 

  • Weeda SM, Kumar GNM, Knowles NR (2011) Protein mobilization from potato tubers during long-term storage and daughter tuber formation. Int J Plant Sci 172:459–470

    Article  CAS  Google Scholar 

  • Wientjes FB, Segal AW (1995) NADPH oxidase and the respiratory burst. Semin Cell Biol 6:357–365

    Article  CAS  PubMed  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Dua X, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 16:1517–1528

    Article  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka H, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp 91 phox homologue by fungal cell wall, arachidonic acid, and salicylic acid in potato. MPMI 14:725–736

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Tan KS, Zhang X, Sun AY, Grace Y, Sun GY, Lee JCM (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118:3695–3703

    Article  CAS  PubMed  Google Scholar 

  • Zommick DH, Knowles LO, Knowles NR (2014) Tuber respiratory profiles during low temperature sweetening (LTS) and reconditioning of LTS-resistant and susceptible potato (Solanum tuberosum L.) cultivars. Postharvest Biol Technol 92:128–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Joseph E. Munyaneza (National Program Leader, USDA-ARS, Beltsville, MD, USA) for providing CLso-infected tuber samples. Financial support was provided by the USDA-ARS, Washington State Potato Commission, and Washington State University Agricultural Research Center to N. R. Knowles.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. N. Mohan Kumar or N. Richard Knowles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G.N.M., Knowles, L.O. & Knowles, N.R. Zebra chip disease enhances respiration and oxidative stress of potato tubers (Solanum tuberosum L.). Planta 246, 625–639 (2017). https://doi.org/10.1007/s00425-017-2714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2714-8

Keywords

Navigation