, Volume 246, Issue 1, pp 19–32 | Cite as

Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures

  • Pedro Joaquín Sánchez-Pujante
  • María Borja-Martínez
  • María Ángeles Pedreño
  • Lorena AlmagroEmail author


Main conclusion

Glucosinolates are biologically active compounds which are involved in plant defense reaction. The use of plant in vitro cultures and genetic engineering is a promising strategy for their sustainable production.

Glucosinolates are a class of secondary metabolites found mainly in Brassicaceae, which contain nitrogen and sulfur in their structures. Glucosinolates are divided into three groups depending on the amino acid from which they are biosynthesized. Aliphatic glucosinolates are generally derived from leucine, valine, methionine, isoleucine and alanine while indole and aromatic glucosinolates are derived from tryptophan and phenylalanine or tyrosine, respectively. These compounds are hydrolyzed by the enzyme myrosinase when plants are stressed by biotic and abiotic factors, obtaining different degradation products. Glucosinolates and their hydrolysis products play an important role in plant defense responses against different types of stresses. In addition, these compounds have beneficial effect on human health because they are strong antioxidants and they have potent cardiovascular, antidiabetic, antimicrobial and antitumoral activities. Due to all the properties described above, the demand for glucosinolates and their hydrolysis products has enormously increased, and therefore, new strategies that allow the production of these compounds to be improved are needed. The use of plant in vitro cultures is emerging as a biotechnological strategy to obtain glucosinolates and their derivatives. This work is focused on the biosynthesis of glucosinolates and the bioactivity of these compounds in plants. In addition, a detailed study on the strategies used to increase the production of several glucosinolates, in particular those synthesized in Brassicaceae, using in vitro plant cultures has been made. Special attention has been paid for increasing the production of glucosinolates and their derivatives using metabolic engineering.


Bioactivity Bioproduction Biosynthetic pathway Glucosinolates 



This work has been supported by the Fundación Seneca-Agencia de Ciencia y Tecnología de la Región de Murcia (No. 19876/GERM/15) and by the Ministerio de Economía y Competitividad (No. BIO2014-51861-R).


  1. Aires A, Mota VR, Saavedra MJ, Monteiro AA, Simoes M, Rosa EAS, Bennett RN (2009) Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J Appl Microbiol 106(6):2096–2105. doi: 10.1111/j.1365-2672.2009.04181.x CrossRefPubMedGoogle Scholar
  2. Almagro L, Gutierrez J, Pedreño MA, Sottomayor M (2014) Synergistic and additive influence of cyclodextrins and methyl jasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in Catharanthus roseus cell cultures. Plant Cell Tiss Org 119(3):543–551. doi: 10.1007/s11240-014-0554-9 CrossRefGoogle Scholar
  3. Alvarez S, He Y, Chen S (2008) Comparative investigations of the glucosinolate–myrosinase system in Arabidopsis suspension cells and hypocotyls. Plant Cell Physiol 49(3):324–333. doi: 10.1093/pcp/pcn007 CrossRefPubMedGoogle Scholar
  4. Andréasson E, Jørgensen LB (2003) Localization of plant myrosinases and glucosinolates. In: Romeo JT (ed) Integr Elsevier, Phytochem Ethnobot Mol Ecol pp 79–99Google Scholar
  5. Armah CN, Derdemezis C, Traka MH, Dainty JR, Doleman JF, Saha S, Leung W, Potter JF, Lovegrove JA, Mithen RF (2015) Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: evidence from randomised controlled trials. Mol Nutr Food Res 59(5):918–926. doi: 10.1002/mnfr.201400863 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Augustine R, Bisht NC (2015) Biotic elicitors and mechanical damage modulate glucosinolate accumulation by co-ordinated interplay of glucosinolate biosynthesis regulators in polyploid Brassica juncea. Phytochemistry 117:43–50. doi: 10.1016/j.phytochem.2015.05.015 CrossRefPubMedGoogle Scholar
  7. Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, Valgimigli L (2005a) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J Agr Food Chem 53(7):2475–2482. doi: 10.1021/jf047945a CrossRefGoogle Scholar
  8. Barillari J, Cervellati R, Paolini M, Tatibouët A, Rollin P, Iori R (2005b) Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (Kaiware Daikon) and its redox properties. J Agr Food Chem 53(26):9890–9896. doi: 10.1021/jf051465h CrossRefGoogle Scholar
  9. Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67(11):1053–1067. doi: 10.1016/j.phytochem.2006.02.024 CrossRefPubMedGoogle Scholar
  10. Borges A, Abreu AC, Ferreira C, Saavedra MJ, Simões LC, Simões M (2015) Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J Food Sci Technol 52(8):4737–4748. doi: 10.1007/s13197-014-1533-1 CrossRefPubMedGoogle Scholar
  11. Brader G, Tas É, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogenerwinia carotovora. Plant Physiol 126(2):849–860. doi: 10.1104/pp.126.2.849 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brown KK, Hampton MB (2011) Biological targets of isothiocyanates. BBA-Gen Subjects 1810(9):888–894. doi: 10.1016/j.bbagen.2011.06.004 CrossRefGoogle Scholar
  13. Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481. doi: 10.1016/S0031-9422(02)00549-6 CrossRefPubMedGoogle Scholar
  14. Bulgakov VP, Veremeichik GN, Grigorchuk VP, Rybin VG, Shkryl YN (2016) The rolB gene activates secondary metabolism in Arabidopsis calli via selective activation of genes encoding MYB and bHLH transcription factors. Plant Physiol Bioch 102:70–79. doi: 10.1016/j.plaphy.2016.02.015 CrossRefGoogle Scholar
  15. Calmes B, N’Guyen G, Dumur J, Brisach CA, Campion C, Iacomi B, Pigné S, Dias E, Macherel D, Guillemette T, Simoneau P (2015) Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. Frontiers in Plant Science 6:414. doi: 10.3389/fpls.2015.00414 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cartea González ME, Francisco Candeira M, Abilleira Ambroa R, Velasco Pazos P (2008) Los glucosinolatos como factor de calidad en las brásicas: degradación desde el campo hasta la mesa. Horticultura 209:54–61Google Scholar
  17. Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137(1):253–262. doi: 10.1104/pp.104.054395 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Champolivier L, Merrien A (1996) Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. Eur J Agron 5(3):153–160. doi: 10.1016/S1161-0301(96)02004-7 CrossRefGoogle Scholar
  19. Chung IM, Rekha K, Rajakumar G, Thiruvengadam M (2016) Production of glucosinolates, phenolic compounds and associated gene expression profiles of hairy root cultures in turnip (Brassica rapa ssp. rapa). 3. Biotech 6(2):175. doi: 10.1007/s13205-016-0492-9 Google Scholar
  20. Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18(6):337–347. doi: 10.1016/j.molmed.2012.04.003 CrossRefPubMedGoogle Scholar
  21. Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(S1):S128–S138. doi: 10.1002/mnfr.200700195 PubMedGoogle Scholar
  22. Du L, Halkier BA (1996) Isolation of a microsomal enzyme system involved in glucosinolate biosynthesis from seedlings of Tropaeolum majus L. Plant Physiol 111(3):831–837. doi: 10.1104/pp.111.3.831 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dufour V, Stahl M, Baysse C (2015) The antibacterial properties of isothiocyanates. Microbiology 161(2):229–243. doi: 10.1099/mic.0.082362-0 CrossRefPubMedGoogle Scholar
  24. Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, Lozniewski A (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo [a] pyrene-induced stomach tumors. P Natl Acad Sci USA 99(11):7610–7615. doi: 10.1073/pnas.112203099 CrossRefGoogle Scholar
  25. Frerigmann H, Gigolashvili T (2014) MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7(5):814–828. doi: 10.1093/mp/ssu004 CrossRefPubMedGoogle Scholar
  26. Fuentes F, Paredes-Gonzalez X, Kong ANT (2015) Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3, 3′-diindolylmethane: Antioxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Reports 1(3):179–196. doi: 10.1007/s40495-015-0017-y CrossRefGoogle Scholar
  27. Furuya AKM, Sharifi HJ, Jellinger RM, Cristofano P, Shi B, de Noronha CM (2016) Sulforaphane inhibits HIV infection of macrophages through Nrf2. PLoS Pathog 12(4):e1005581. doi: 10.1371/journal.ppat.1005581 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gigolashvili T, Berger B, Mock HP, Müller C, Weisshaar B, Flügge UI (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50(5):886–901. doi: 10.1111/j.1365-313X.2007.03099.x CrossRefPubMedGoogle Scholar
  29. Gigolashvili T, Berger B, Flügge UI (2009) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem Rev 8(1):3–13. doi: 10.1007/s11101-008-9112-6 CrossRefGoogle Scholar
  30. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333. doi: 10.1146/annurev.arplant.57.032905.105228 CrossRefPubMedGoogle Scholar
  31. Hara M, Harazaki A, Tabata K (2013) Administration of isothiocyanates enhances heat tolerance in Arabidopsis thaliana. Plant Growth Regul 69(1):71–77. doi: 10.1007/s10725-012-9748-5 CrossRefGoogle Scholar
  32. Haristoy X, Angioi-Duprez K, Duprez A, Lozniewski A (2003) Efficacy of sulforaphane in eradicating Helicobacter pylori in human gastric xenografts implanted in nude mice. Antimicrob Agents Ch 47(12):3982–3984. doi: 10.1128/AAC.47.12.3982-3984.2003 CrossRefGoogle Scholar
  33. Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. P Natl Acad Sci USA 104(15):6478–6483. doi: 10.1073/pnas.0611629104 CrossRefGoogle Scholar
  34. Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Sci 64(1):48. doi: 10.1270/jsbbs.64.48 CrossRefGoogle Scholar
  35. Jang M, Hong E, Kim GH (2010) Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. J Food Sci 75(7):M412–M416. doi: 10.1111/j.1750-3841.2010.01725.x CrossRefPubMedGoogle Scholar
  36. Jensen CR, Mogensen VO, Mortensen G, Fieldsend JK, Milford GFJ, Andersen MN, Thage JH (1996) Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crop Res 47(2):93–105CrossRefGoogle Scholar
  37. Kastell A, Smetanska I, Ulrichs C, Cai Z, Mewis I (2013a) Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Appl Biochem Biotech 169(2):624–635. doi: 10.1007/s12010-012-0017-x CrossRefGoogle Scholar
  38. Kastell A, Smetanska I, Schreiner M, Mewis I (2013b) Hairy roots, callus, and mature plants of Arabidopsis thaliana exhibit distinct glucosinolate and gene expression profiles. Plant Cell Tiss Org 115(1):45–54. doi: 10.1007/s11240-013-0338-7 CrossRefGoogle Scholar
  39. Kastell A, Zrenner R, Schreiner M, Kroh L, Ulrichs C, Smetanska I, Mewis I (2015) Metabolic engineering of aliphatic glucosinolates in hairy root cultures of Arabidopsis thaliana. Plant Mol Biol Rep 33(3):598–608. doi: 10.1007/s11105-014-0781-6 CrossRefGoogle Scholar
  40. Kaufman-Szymczyk A, Majewski G, Lubecka-Pietruszewska K, Fabianowska-Majewska K (2015) The role of sulforaphane in epigenetic mechanisms, including interdependence between histone modification and DNA methylation. Int J Mol Sci 16(12):29732–29743. doi: 10.3390/ijms161226195 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Khokon M, Jahan MS, Rahman T, Hossain MA, Muroyama D, Minami I, Munemasa S, Mori IC, Nakamura Y, Murata Y (2011) Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. Plant Cell Environ 34(11):1900–1906. doi: 10.1111/j.1365-3040.2011.02385.x CrossRefPubMedGoogle Scholar
  42. Kim SJ, Park WT, Uddin MR, Kim YB, Nam SY, Jho KH, Park SU (2013) Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. Italica). Nat Prod Commun 8(2):217–220PubMedGoogle Scholar
  43. Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161(1):325–332PubMedPubMedCentralGoogle Scholar
  44. Kumar P, Srivastava DK (2016) Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. Italica), an important vegetable crop. Biotechnol Lett 38(4):561–571. doi: 10.1007/s10529-015-2031-x CrossRefPubMedGoogle Scholar
  45. Kumar G, Tuli HS, Mittal S, Shandilya JK, Tiwari A, Sandhu SS (2015) Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumor Biol 36(6):4005–4016. doi: 10.1007/s13277-015-3391-5 CrossRefGoogle Scholar
  46. LeCoz CJ, Ducombs G (2006) Plants and plant products. In: Frosch PJ, Menne T, Lepottevin JP (eds) Contact Dermatitis, 4th edn. Springer Verlag, Berlin-Heidelberg, pp 751–800CrossRefGoogle Scholar
  47. Levy M, Wang Q, Kaspi R, Parrella MP, Abel S (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43(1):79–96. doi: 10.1111/j.1365-313X.2005.02435.x CrossRefPubMedGoogle Scholar
  48. Liu T, Zhang X, Yang H, Agerbirk N, Qiu Y, Wang H, Shen D, Song J, Li X (2016) Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation. Front Plant Sci 7:83. doi: 10.3389/fpls.2016.00083 PubMedPubMedCentralGoogle Scholar
  49. López-Berenguer C, Martínez-Ballesta MC, García-Viguera C, Carvajal M (2008) Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174(3):321–328. doi: 10.1016/j.plantsci.2007.11.012 CrossRefGoogle Scholar
  50. Ludwig-Müller J, Krishna P, Forreiter C (2000) A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant Physiol 123(3):949–958CrossRefPubMedPubMedCentralGoogle Scholar
  51. Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148(4):2021–2049. doi: 10.1104/pp.108.124784 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Manici LM, Lazzeri L, Palmieri S (1997) In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J Agric Food Chem 45(7):2768–2773. doi: 10.1021/jf9608635 CrossRefGoogle Scholar
  53. Martínez-Ballesta MC, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14(6):11607–11625. doi: 10.3390/ijms140611607 CrossRefGoogle Scholar
  54. Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138(2):1149–1162. doi: 10.1104/pp.104.053389 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131(1):298–308. doi: 10.1104/pp.011015 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agr 80(7):967–984CrossRefGoogle Scholar
  57. Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450. doi: 10.1146/annurev-arplant-042110-103854 CrossRefPubMedGoogle Scholar
  58. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Org 118(1):1–16. doi: 10.1007/s11240-014-0467-7 CrossRefGoogle Scholar
  59. Niimi H, Watanabe M, Serizawa H, Koba T, Nakamura I, Mii M (2015) Amiprophosmethyl-induced efficient in vitro production of polyploids in raphanobrassica with the aid of aminoethoxyvinylglycine (AVG) in the culture medium. Breed Sci 65(5):396–402. doi: 10.1270/jsbbs.65.396 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Padilla G, Cartea ME, Velasco P, de Haro A, Ordás A (2007) Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68(4):536–545. doi: 10.1016/j.phytochem.2006.11.017 CrossRefPubMedGoogle Scholar
  61. Pang Q, Guo J, Chen S, Chen Y, Zhang L, Fei M, Jin S, Li M, Wang Y, Yan X (2012) Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant Soil 355(1–2):363–374. doi: 10.1007/s11104-011-1108-0 CrossRefGoogle Scholar
  62. Park NI, Kim JK, Park WT, Cho JW, Lim YP, Park SU (2011) An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes. Mol Biol Rep 38(8):4947–4953. doi: 10.1007/s11033-010-0638-5 CrossRefPubMedGoogle Scholar
  63. Radovich TJ, Kleinhenz MD, Streeter JG (2005) Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J Am Soc Hortic Sci 130(6):943–949Google Scholar
  64. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21(2):182. doi: 10.3390/molecules21020182 CrossRefPubMedGoogle Scholar
  65. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153CrossRefPubMedGoogle Scholar
  66. Robin AHK, Yi GE, Laila R, Yang K, Park JI, Kim HR, Nou IS (2016) Expression profiling of glucosinolate biosynthetic genes in Brassica oleracea L. var. capitata inbred lines reveals their association with glucosinolate content. Molecules 21(6):787. doi: 10.3390/molecules21060787 CrossRefGoogle Scholar
  67. Senanayake GV, Banigesh A, Wu L, Lee P, Juurlink BH (2012) The dietary phase 2 protein inducer sulforaphane can normalize the kidney epigenome and improve blood pressure in hypertensive rats. Am J Hypertens 25(2):229–235. doi: 10.1038/ajh.2011.200 CrossRefPubMedGoogle Scholar
  68. Shroff R, Vergara F, Muck A, Svatoš A, Gershenzon J (2008) Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. P Natl Acad Sci USA 105(16):6196–6201. doi: 10.1073/pnas.0711730105 CrossRefGoogle Scholar
  69. Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I (2006) DOF transcription factor AtDof1. 1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47(1):10–24. doi: 10.1111/j.1365-313X.2006.02767.x CrossRefPubMedGoogle Scholar
  70. Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS One 2(12):e1322. doi: 10.1371/journal.pone.0001322 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates–gene discovery and beyond. Trends Plant Sci 15(5):283–290. doi: 10.1016/j.tplants.2010.02.005 CrossRefPubMedGoogle Scholar
  72. Songsak T, Lockwood GB (2004) Production of two volatile glucosinolate hydrolysis compounds in Nasturtium montanum and Cleome chelidonii plant cell cultures. Fitoterapia 75(3):296–301. doi: 10.1016/j.fitote.2004.01.007 CrossRefPubMedGoogle Scholar
  73. Sotelo T, Lema M, Soengas P, Cartea ME, Velasco P (2015) In vitro activity of glucosinolates and their degradation products against Brassica-pathogenic bacteria and fungi. Appl Environ Microb 81(1):432–440. doi: 10.1128/AEM.03142-14 CrossRefGoogle Scholar
  74. Sotelo T, Velasco P, Soengas P, Rodríguez VM, Cartea ME (2016) Modification of leaf glucosinolate contents in Brassica oleracea by divergent selection and effect on expression of genes controlling glucosinolate pathway. Front Plant Sci 7:1012. doi: 10.3389/fpls.2016.01012 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Steindal ALH, Rødven R, Hansen E, Mølmann J (2015) Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale. Food Chem 174:44–51. doi: 10.1016/j.foodchem.2014.10.129 CrossRefPubMedGoogle Scholar
  76. Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y (2011) Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J 67(1):81–93. doi: 10.1111/j.1365-313X.2011.04578.x CrossRefPubMedGoogle Scholar
  77. Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131(11):3027S–3033SPubMedGoogle Scholar
  78. Tassoni A, Fornalè S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166(3):895–905. doi: 10.1111/j.1469-8137.2005.01383.x CrossRefPubMedGoogle Scholar
  79. Textor S, Gershenzon J (2009) Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev 8(1):149–170. doi: 10.1007/s11101-008-9117-1 CrossRefGoogle Scholar
  80. Tumer TB, Rojas-Silva P, Poulev A, Raskin I, Waterman C (2015) Direct and indirect antioxidant activity of polyphenol-and isothiocyanate-enriched fractions from Moringa oleifera. J Agr Food Chem 63(5):1505–1513. doi: 10.1021/jf505014n CrossRefGoogle Scholar
  81. Vergara F, Svatoš A, Schneider B, Reichelt M, Gershenzon J, Wittstock U (2006) Glycine conjugates in a lepidopteran insect herbivore—the metabolism of benzylglucosinolate in the cabbage white butterfly. Pieris rapae. ChemBioChem 7(12):1982–1989. doi: 10.1002/cbic.200600280 CrossRefPubMedGoogle Scholar
  82. Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates: a review. LWT-Food Sci Technol 42(10):1561–1572. doi: 10.1016/j.lwt.2009.05.023 CrossRefGoogle Scholar
  83. Wielanek M, Urbanek H (1999) Glucotropaeolin and myrosinase production in hairy root cultures of Tropaeolum majus. Plant Cell Tiss Org 57(1):39–45. doi: 10.1023/A:1006398902248 CrossRefGoogle Scholar
  84. Wittstock U, Burow M (2010) Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Arabidopsis Book 8:e0134. doi: 10.1199/tab.0134 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wu L, Ashraf MHN, Facci M, Wang R, Paterson PG, Ferrie A, Juurlink BH (2004) Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. P Natl Acad Sci USA 101(18):7094–7099. doi: 10.1073/pnas.0402004101 CrossRefGoogle Scholar
  86. Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121(4):1014–1019. doi: 10.1016/j.foodchem.2010.01.040 CrossRefGoogle Scholar
  87. Zaheer M, Giri CC (2016) Enhanced diterpene lactone (andrographolide) production from elicited adventitious root cultures of Andrographis paniculata. Res Chem Intermed. doi: 10.1007/s11164-016-2771-9 Google Scholar
  88. Zang YX, Lim MH, Park BS, Hong SB, Kim DH (2008a) Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol Cells 25(2):231–241PubMedGoogle Scholar
  89. Zang YX, Kim JH, Park YD, Kim DH, Hong SB (2008b) Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. BMB Reports 41(6):472–478CrossRefPubMedGoogle Scholar
  90. Zang YX, Kim DH, Park BS, Hong SB (2009) Metabolic engineering of indole glucosinolates in Chinese cabbage hairy roots expressing Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Biotechnol Bioproc E 14(4):467–473. doi: 10.1007/s12257-008-0294-y CrossRefGoogle Scholar
  91. Zang YX, Ge JL, Huang LH, Gao F, Lv XS, Zheng WW, Hong SB, Zhu ZJ (2015) Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation. J Zhejiang Univ Sci B 16(8):696–708CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Pedro Joaquín Sánchez-Pujante
    • 1
  • María Borja-Martínez
    • 1
  • María Ángeles Pedreño
    • 1
  • Lorena Almagro
    • 1
    Email author
  1. 1.Department of Plant Biology, Faculty of BiologyUniversity of MurciaMurciaSpain

Personalised recommendations