, Volume 246, Issue 1, pp 61–74 | Cite as

Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1

  • Ko HiranoEmail author
  • Reiko Masuda
  • Wakana Takase
  • Yoichi Morinaka
  • Mayuko Kawamura
  • Yoshinobu Takeuchi
  • Hiroki Takagi
  • Hiroki Yaegashi
  • Satoshi Natsume
  • Ryohei Terauchi
  • Toshihisa Kotake
  • Yasuyuki Matsushita
  • Takashi Sazuka
Original Article


Main conclusion

The screening of rice mutants with improved cellulose to glucose saccharification efficiency (SE) identifies reduced xylan and/or ferulic acid, and a qualitative change of lignin to impact SE.

To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTOMORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.


Cellulose Ferulic acid Lignin Rice mutant Xylan 



Bending moment at breaking




Ferulic acid




Saccharification efficiency



We thank Dr. Taiichiro Ookawa (Tokyo University of Agriculture and Technology) for providing seeds of Leaf Star and Chugoku 117. We also thank Sayaka Murakami, Yusuke Iwamoto, Masaki Ban, Motoko Oosawa, Natsumi Mutoh, Yuri Kitagawa, and Chiaki Ishii for technical assistance. This work was supported by Grants-in-Aid from the NC-CARP project, the Ministry of Education, Science, Sports and Culture of Japan to TS and KH, and KAKENHI (series of single-year grants, 26 1393) to KH.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

425_2017_2685_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1424 kb)


  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178CrossRefPubMedGoogle Scholar
  2. Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RA (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci USA 109:989–993CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S (2009) Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol 50:1886–1897CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim RB, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M (2009) Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol Genet Genomics 281:223–231CrossRefPubMedGoogle Scholar
  5. Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sánchez ME, Benke PI, Canlas PE, Cao P, Brewer S, Lin F, Smith WL, Zhang X, Keasling JD, Jentoff RE, Foster SB, Zhou J, Ziebell A, An G, Scheller HV, Ronald PC (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol 161:1615–1633CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefPubMedGoogle Scholar
  7. Brown D, Wightman R, Zhang Z, Gomez LD, Atanassov I, Bukowski J-P, Tryfona T, McQueen-Mason SJ, Dupree P, Turner S (2011) Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J 66:401–413CrossRefPubMedGoogle Scholar
  8. Casler MD, Jung H-JG (2006) Relationships of fibre, lignin, and phenolics to in vitro fibre digestibility in three perennial grasses. Anim Feed Sci Technol 125:151–161CrossRefGoogle Scholar
  9. Chen X, Vega-Sánchez ME, Verhertbruggen Y, Chiniquy D, Canlas PE, Fagerström A, Prak L, Christensen U, Oikawa A, Chern M, Zuo S, Lin F, Auer M, Willats WG, Bartley L, Harholt J, Scheller HV, Ronald PC (2013) Inactivation of OsIRX10 leads to decreased xylan content in rice culm cell walls and improved biomass saccharification. Mol Plant 6:570–573CrossRefPubMedGoogle Scholar
  10. Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K, Carroll A, Ulvskov P, Harholt J, Keasling JD, Pauly M, Scheller HV, Ronald PC (2012) XAX1 from glycosyltransferase family 61 mediates xylosyl transfer to rice xylan. Proc Natl Acad Sci USA 109:17117–17122CrossRefPubMedPubMedCentralGoogle Scholar
  11. Christensen SK, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100:469–478CrossRefPubMedGoogle Scholar
  12. Dai X, You C, Chen G, Li X, Zhang Q, Wu C (2011) OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol 75:333–345CrossRefPubMedGoogle Scholar
  13. de O Buanafina MM (2009) Feruloylation in grasses: current and future perspectives. Mol Plant 2:861–872CrossRefGoogle Scholar
  14. del Río JC, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, Gutiérrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60:5922–5935CrossRefPubMedGoogle Scholar
  15. Dixon RA, Pasinetti GM (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154:453–457CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  17. Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121CrossRefGoogle Scholar
  18. Eloy N, Voorend W, Lan W, Saleme ML, Cesarino I, Vanholme R, Smith RA, Goeminne G, Pallidis A, Morreel K, Nicomedes J, Ralph J, Boerjan WA (2017) Silencing chalcone synthase impedes the incorporation of tricin in lignin and increases lignin content. Plant Physiol 173:998–1016CrossRefPubMedGoogle Scholar
  19. Grabber JH, Hatfield RD, Ralph J (1998a) Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J Sci Food Agric 77:193–200CrossRefGoogle Scholar
  20. Grabber JH, Ralph J, Hatfield RD (1998b) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agric Food Chem 46:2609–2614CrossRefGoogle Scholar
  21. Grafius JE, Brown HM (1954) Lodging resistance in oats. Agron J 46:414–418CrossRefGoogle Scholar
  22. Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839CrossRefGoogle Scholar
  23. Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S (2010) Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta 232:95–108CrossRefPubMedGoogle Scholar
  24. Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M (2013) Identification of transcription factors involved in rice secondary cell wall formation. Plant Cell Physiol 54:1791–1802CrossRefPubMedGoogle Scholar
  25. Hong L, Qian Q, Tang D, Wang K, Li M, Cheng Z (2012) A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta 236:141–151CrossRefPubMedGoogle Scholar
  26. Huang D, Wang S, Zhang B, Shang-Guan K, Shi Y, Zhang D, Liu X, Wu K, Xu Z, Fu X, Zhou Y (2015) A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell 27:1681–1696CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kashiwagi T, Hirotsu N, Madoka Y, Ookawa T, Ishimaru K (2007) Improvement of resistance to bending-type lodging in rice. Jpn J Crop Sci 76:1–9CrossRefGoogle Scholar
  28. Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S (2011) Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot 62:2053–2062CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kuang B, Zhao X, Zhou C, Zeng W, Ren J, Ebert B, Beahan CT, Deng X, Zeng Q, Zhou G, Doblin MS, Heazlewood JL, Bacic A, Chen X, Wu AM (2016) Role of UDP-glucuronic acid decarboxylase in xylan biosynthesis in Arabidopsis. Mol Plant 9:1119–1131CrossRefPubMedGoogle Scholar
  30. Lam TB-T, Iiyama K, Stone BA (2003) Hot alkali-labile linkages in the walls of the forage grass Phalaris aquatica and Lolium perenne and their relation to in vitro wall digestibility. Phytochemistry 64:603–607CrossRefPubMedGoogle Scholar
  31. Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph SA, Zakai UI, Morreel K, Boerjan W, Ralph J (2015) Tricin, a flavonoid monomer in monocot lignification. Plant Physiol 167:1284–1295CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lan W, Rencoret J, Lu F, Karlen SD, Smith BG, Harris PJ, Del Río JC, Ralph J (2016) Tricin-lignins: occurrence and quantitation of tricin in relation to phylogeny. Plant J 88:1046–1057CrossRefPubMedGoogle Scholar
  33. Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M, Li J (2003) BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 15:2020–2031CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69:685–697CrossRefPubMedGoogle Scholar
  35. Li X, Bonawitz ND, Weng JK, Chapple C (2010) The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell 22:1620–1632CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li J, Jiang J, Qian Q, Xu Y, Zhang C, Xiao J, Du C, Luo W, Zou G, Chen M, Huang Y, Feng Y, Cheng Z, Yuan M, Chong K (2011) Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell 23:628–640CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li F, Zhang M, Guo K, Hu Z, Zhang R, Feng Y, Yi X, Zou W, Wang L, Wu C, Tian J, Lu T, Xie G, Peng L (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J 13:514–525CrossRefPubMedGoogle Scholar
  38. Marriott PE, Sibout R, Lapierre C, Fangel JU, Willats WG, Hofte H, Gómez LD, McQueen-Mason SJ (2014) Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants. Proc Natl Acad Sci USA 111:14601–14606CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mase K, Sato K, Nakano Y, Nishikubo N, Tsuboi Y, Zhou J, Kitano H, Katayama Y (2005) The ectopic expression of phenylalanine ammonia lyase with ectopic accumulation of polysaccharide-linked hydroxycinnamoyl esters in internode parenchyma of rice mutant fukei 71. Plant Cell Rep 24:487–493CrossRefPubMedGoogle Scholar
  40. McCarthy RL, Zhong R, Ye ZH (2009) MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol 50:1950–1964CrossRefPubMedGoogle Scholar
  41. Moreira-Vilar FC, Siqueira-Soares Rde C, Finger-Teixeira A, de Oliveira DM, Ferro AP, da Rocha GJ, Ferrarese Mde L, dos Santos WD, Ferrarese-Filho O (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods. PLoS ONE 9:e110000CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ookawa T, Ishihara K (1992) Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice. Jpn J Crop Sci 61:419–425CrossRefGoogle Scholar
  43. Ookawa T, Ishihara K (1993) Varietal difference of the cell wall components affecting the bending stress of the culm in relation to the lodging resistance in paddy rice. Jpn J Crop Sci 62:378–384CrossRefGoogle Scholar
  44. Ookawa T, Inoue K, Matsuoka M, Ebitani T, Takarada T, Yamamoto T, Ueda T, Yokoyama T, Sugiyama C, Nakaba S, Funada R, Kato H, Kanekatsu M, Toyota K, Motobayashi T, Vazirzanjani M, Tojo S, Hirasawa T (2014) Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production. Sci Rep 4:6567CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ozawa K (2012) A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Methods Mol Biol 847:51–57CrossRefPubMedGoogle Scholar
  46. Pawar PM, Derba-Maceluch M, Chong SL, Gómez LD, Miedes E, Banasiak A, Ratke C, Gaertner C, Mouille G, McQueen-Mason SJ, Molina A, Sellstedt A, Tenkanen M, Mellerowicz EJ (2016) Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose. Plant Biotechnol J 14:387–397CrossRefPubMedGoogle Scholar
  47. Petersen PD, Lau J, Ebert B, Yang F, Verhertbruggen Y, Kim JS, Varanasi P, Suttangkakul A, Auer M, Loque D, Scheller HV (2012) Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants. Biotechnol Biofuels 5:84CrossRefPubMedPubMedCentralGoogle Scholar
  48. Petti C, Hirano K, Stork J, DeBolt S (2015) Mapping of a cellulose-deficient mutant named dwarf1-1 in Sorghum bicolor to the green revolution gene gibberellin20-oxidase reveals a positive regulatory association between gibberellin and cellulose biosynthesis. Plant Physiol 169:705–716CrossRefPubMedPubMedCentralGoogle Scholar
  49. Piston F, Uauy C, Fu L, Langston J, Labavitch J, Dubcovsky J (2010) Down-regulation of four putative arabinoxylan feruloyl transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls. Planta 231:677–691CrossRefPubMedGoogle Scholar
  50. Pomar F, Caballero N, Pedreño M, Ros Barceló A (2002) H2O2 generation during the auto-oxidation of coniferyl alcohol drives the oxidase activity of a highly conserved class III peroxidase involved in lignin biosynthesis. FEBS Lett 529:198–202CrossRefPubMedGoogle Scholar
  51. Prashant S, Srilakshmi Sunita M, Pramod S, Gupta RK, Anil Kumar S, Rao Karumanchi S, Rawal SK, Kavi Kishor PB (2011) Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco. Plant Cell Rep 30:2215–2231CrossRefPubMedGoogle Scholar
  52. Rencoret J, Ralph J, Marques G, Gutiérrez A, Martínez Á, del Río JC (2013) Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers. J Agric Food Chem 61:2434–2445CrossRefPubMedGoogle Scholar
  53. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefPubMedGoogle Scholar
  54. Shih CH, Chu H, Tang LK, Sakamoto W, Maekawa M, Chu IK, Wang M, Lo C (2008) Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta 228:1043–1054CrossRefPubMedGoogle Scholar
  55. Stamatiou G, Vidaurre DP, Shim I, Tang X, Moeder W, Bonetta D, McCourt P (2013) Forward genetic screening for the improved production of fermentable sugars from plant biomass. PLoS ONE 8:e55616CrossRefPubMedPubMedCentralGoogle Scholar
  56. Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T (2009) High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol 26:337–340CrossRefGoogle Scholar
  57. Takeuchi Y (2011) Developing isogenic lines of japanese rice cultivar ‘Koshihikari’ with early and late heading. JARQ 45:15–22CrossRefGoogle Scholar
  58. Tanaka N, Itoh H, Sentoku N, Kojima M, Sakakibara H, Izawa T, Itoh J, Nagato Y (2011) The COP1 ortholog PPS regulates the juvenile-adult and vegetative-reproductive phase changes in rice. Plant Cell 23:2143–2154CrossRefPubMedPubMedCentralGoogle Scholar
  59. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2012) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tsuge T, Inagaki N, Yoshizumi T, Shimada H, Kawamoto T, Matsuki R, Yamamoto N, Matsui M (2001) Phytochrome-mediated control of COP1 gene expression in rice plants. Mol Genet Genomics 265(1):43–50CrossRefPubMedGoogle Scholar
  61. Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19:2140–2155CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307CrossRefPubMedGoogle Scholar
  63. Watanabe T (1997) Lodging resistance. In: Matsuo T, Futsuhara Y, Kikuchi F, Yamaguchi H (eds) Science of the rice plant, genetics 3. Food and Agriculture Policy Research Center, Tokyo, pp 567–577Google Scholar
  64. Weng JK, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172CrossRefPubMedGoogle Scholar
  65. Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90–93CrossRefPubMedGoogle Scholar
  66. Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K, Peng Y, Zhou Y, Zhu Z (2012) Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol 159:1440–1452CrossRefPubMedPubMedCentralGoogle Scholar
  67. Xiong G, Li R, Qian Q, Song X, Liu X, Yu Y, Zeng D, Wan J, Li J, Zhou Y (2010) The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant J 64:56–70PubMedGoogle Scholar
  68. Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429CrossRefPubMedGoogle Scholar
  69. Zeng J, Helms GL, Gao X, Chen S (2013) Quantification of wheat straw lignin structure by comprehensive NMR analysis. J Agric Food Chem 61:10848–10857CrossRefPubMedGoogle Scholar
  70. Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z (2006) GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhang M, Zhang B, Qian Q, Yu Y, Li R, Zhang J, Liu X, Zeng D, Li J, Zhou Y (2010) Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J 63:312–328CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhou Y, Li S, Qian Q, Zeng D, Zhang M, Guo L, Liu X, Zhang B, Deng L, Liu X, Luo G, Wang X, Li J (2009) BC10, a DUF266-containing and golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). Plant J 57:446–462CrossRefPubMedGoogle Scholar
  74. Zuk M, Działo M, Richter D, Dymińska L, Matuła J, Kotecki A, Hanuza J, Szopa J (2016) Chalcone synthase (CHS) gene suppression in flax leads to changes in wall synthesis and sensing genes, cell wall chemistry and stem morphology parameters. Front Plant Sci 7:894CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ko Hirano
    • 1
    Email author
  • Reiko Masuda
    • 1
  • Wakana Takase
    • 1
  • Yoichi Morinaka
    • 1
    • 7
  • Mayuko Kawamura
    • 1
  • Yoshinobu Takeuchi
    • 2
  • Hiroki Takagi
    • 3
  • Hiroki Yaegashi
    • 3
  • Satoshi Natsume
    • 3
  • Ryohei Terauchi
    • 3
  • Toshihisa Kotake
    • 4
    • 5
  • Yasuyuki Matsushita
    • 6
  • Takashi Sazuka
    • 1
  1. 1.Bioscience and Biotechnology CenterNagoya UniversityNagoyaJapan
  2. 2.Rice Breeding Research TeamNARO Institute of Crop ScienceTsukubaJapan
  3. 3.Iwate Biotechnology Research CenterKitakamiJapan
  4. 4.Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  5. 5.Institute for Environmental Science and TechnologySaitama UniversitySaitamaJapan
  6. 6.Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
  7. 7.Zensho Holdings Co., Ltd.TokyoJapan

Personalised recommendations