Skip to main content
Log in

Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development

Planta Aims and scope Submit manuscript

Abstract

Main conclusion

AtPLC2 is an essential gene in Arabidopsis, since it is required for female gametogenesis and embryo development. AtPLC2 might play a role in cell division during embryo-sac development and early embryogenesis.

Phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in signal transduction during plant development and in the response to various biotic- and abiotic stresses. The Arabidopsis PI-PLC gene family is composed of nine members, named PLC1 to PLC9. Here, we report that PLC2 is involved in female gametophyte development and early embryogenesis. Using two Arabidopsis allelic T-DNA insertion lines with different phenotypic penetrations, we observed both female gametophytic defects and aberrant embryos. For the plc2-1 mutant (Ws background), no homozygous plants could be recovered in the offspring from self-pollinated plants. Nonetheless, plc2-1 hemizygous mutants are affected in female gametogenesis, showing embryo sacs arrested at early developmental stages. Allelic hemizygous plc2-2 mutant plants (Col-0 background) present reduced seed set and embryos arrested at the pre-globular stage with abnormal patterns of cell division. A low proportion (0.8%) of plc2-2 homozygous mutants was found to escape lethality and showed morphological defects and disrupted megagametogenesis. PLC2-promoter activity was observed during early megagametogenesis, and after fertilization in the embryo proper. Immunolocalization studies in early stage embryos revealed that PLC2 is restricted to the plasma membrane. Altogether, these results establish a role for PLC2 in both reproductive- and embryo development, presumably by controlling mitosis and/or the formation of cell-division planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

IP3 :

Inositol 1,4,5-trisphosphate

PA:

Phosphatidic acid

PIP:

Phosphatidylinositol phosphate

PI-PLC:

Phosphoinositide-specific phospholipase C

PIP2 :

Phosphatidylinositol 4,5-bisphosphate

Ws:

Wassilewskija

References

  • Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875

    Article  CAS  PubMed  Google Scholar 

  • Carland FM, Nelson T (2004) COTYLEDON VASCULAR PATTERN2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell 16:1263–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lin WH, Wang Y, Luan S, Xue HW (2008) An inositol polyphosphate 5-phosphatase functions in PHOTOTROPIN1 signaling in Arabidopis by altering cytosolic Ca2+. Plant Cell 20:353–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cigliano RA, Cremona G, Paparo R, Termolino P, Perrella G, Gutzat R, Consiglio MF, Conicella C (2013) Histone deacetylase AtHDA7 is required for female gametophyte and embryo development in Arabidopsis. Plant Physiol 163:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLillo N, Romero C, Lin H, Vancura A (2003) Genetic evidence for a role of phospholipase C at the budding yeast kinetochore. Mol Genet Genomics 269:261–270

    CAS  PubMed  Google Scholar 

  • Desai P, Guha N, Galdieri L, Hadi S, Vancura A (2009) Plc1p is required for proper chromatin structure and activity of the kinetochore in Saccharomyces cerevisiae by facilitating recruitment of the RSC complex. Mol Genet Genomics 281:511–523

    Article  CAS  PubMed  Google Scholar 

  • Dowd PE, Coursol S, Skirpan AL, T-h Kao, Gilroy S (2006) Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell 18:1438–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drews GN, Koltunow AMG (2011) The female gametophyte. The Arabidopsis Book:e0155

  • Duan Q, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107:17821–17826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY (2014) Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5:3129

    PubMed  Google Scholar 

  • Gao K, Liu YL, Li B, Zhou RG, Sun DY, Zheng SZ (2014) Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance. Plant Cell Physiol 55:1873–1883

    Article  CAS  PubMed  Google Scholar 

  • Gonorazky G, Ramirez L, Abd-El-Haliem A, Vossen JH, Lamattina L, Ten Have A, Joosten MH, Laxalt AM (2014) The tomato phosphatidylinositol-phospholipase C2 (SlPLC2) is required for defense gene induction by the fungal elicitor xylanase. J Plant Physiol 171:959–965

    Article  CAS  PubMed  Google Scholar 

  • Gonorazky G, Guzzo MC, Laxalt AM (2016) Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea. Mol Plant Pathol 17:1354–1363. doi:10.1111/mpp.12365

    Article  CAS  PubMed  Google Scholar 

  • Heilmann I, Ischebeck T (2016) Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. Plant Reprod 29:3–20

    Article  CAS  PubMed  Google Scholar 

  • Helling D, Possart A, Cottier S, Klahre U, Kost B (2006) Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18:3519–3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama T, Mitsukawa N, Shibata D, Shinozaki K (1997) AtPLC2, a gene encoding phosphoinositide-specific phospholipase C, is constitutively expressed in vegetative and floral tissues in Arabidopsis thaliana. Plant Mol Biol 34:175–180

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Zhao J, Guo L, Kim S-C, Deng X, Wang G, Zhang G, Li M, Wang X (2016) Plant phospholipases D and C and their diverse functions in stress responses. Progress Lipid Res 62:55–74

    Article  CAS  Google Scholar 

  • Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159

    Article  CAS  PubMed  Google Scholar 

  • Hunt L, Otterhag L, Lee JC, Lasheen T, Hunt J, Seki M, Shinozaki K, Sommarin M, Gilmour DJ, Pical C, Gray JE (2004) Gene-specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. New Phytol 162:643

    Article  CAS  Google Scholar 

  • Iwano M, Ngo QA, Entani T, Shiba H, Nagai T, Miyawaki A, Isogai A, Grossniklaus U, Takayama S (2012) Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development 139:4202–4209

    Article  CAS  PubMed  Google Scholar 

  • Kanehara K, Yu CY, Cho Y, Cheong WF, Torta F, Shui G, Wenk MR, Nakamura Y (2015) Arabidopsis AtPLC2 is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genet 11:e1005511

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanteri ML, Laxalt AM, Lamattina L (2008) Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Plant Physiol 147:188–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Lee DH, Cho HK, Kim SH, Auh JH, Pai HS (2015) InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis. Plant Cell 27:417–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EAC, Webb AAR, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci USA 100:10091–10095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, He Y, Wang Y, Zhao S, Chen X, Ye T, Wu Y (2015) Arabidopsis PLC2 is involved in auxin-modulated reproductive development. Plant J 84:504–515

    Article  CAS  PubMed  Google Scholar 

  • Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ, Chu C (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158:451–464

    Article  CAS  PubMed  Google Scholar 

  • Monteiro D, Liu Q, Lisboa S, Scherer GE, Quader H, Malho R (2005) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot 56:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nature Cell Biol 8:64–71

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130:22–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munnik T (2014) PI-PLC: Phosphoinositide-phospholipase C. in plant signaling. In: Wang X (ed) Phospholipases in plant signalling. Springer, Berlin, pp 27–54

    Chapter  Google Scholar 

  • Munnik T, Nielsen E (2011) Green light for polyphosphoinositide signals in plants. Curr Opin Plant Biol 14:489–497

    Article  CAS  PubMed  Google Scholar 

  • Munnik T, Vermeer J (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant, Cell Environ 33:655–669

    Article  CAS  Google Scholar 

  • Muralla R, Lloyd J, Meinke D (2011) Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS One 6:e28398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niittyla T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6:1711–1726

    Article  CAS  PubMed  Google Scholar 

  • Nuhse TS, Bottrill AR, Jones AM, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Yu HJ, Sundaresan V (2007) Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell 19:3578–3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335

    CAS  PubMed  Google Scholar 

  • Sanchez JP, Chua NH (2001) Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell 13:1143–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer M, Paciorek T, Benkova E, Friml J (2006) Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat Protoc 1:98–103

    Article  CAS  PubMed  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  CAS  PubMed  Google Scholar 

  • Tasma IM, Brendel V, Whitham SA, Bhattacharyya MK (2008) Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem 46:627–637

    Article  CAS  PubMed  Google Scholar 

  • Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, van Wijk R, Vermeer JE, Heilmann I, Munnik T, Friml J (2014) Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 26:2114–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62:2349–2361

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen W, Vermeer JE, Gadella TW Jr, Munnik T (2007) Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J 52:1014–1026

    Article  PubMed  Google Scholar 

  • Vermeer JE, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TW Jr (2009) Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J 57:356–372

    Article  CAS  PubMed  Google Scholar 

  • Vossen JH, Abd-El-Haliem A, Fradin EF, van den Berg GC, Ekengren SK, Meijer HJ, Seifi A, Bai Y, Ten Have A, Munnik T, Thomma BP, Joosten MH (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–239

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lin WH, Chen X, Xue HW (2009) The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking. Cell Res 19:1191–1204

    Article  CAS  PubMed  Google Scholar 

  • York JD (2006) Regulation of nuclear processes by inositol polyphosphates. Biochim Biophys Acta 1761:552–559

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY (2012) Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J 69:689–700

    Article  CAS  PubMed  Google Scholar 

  • Zonia L, Munnik T (2006) Cracking the green paradigm: functional coding of phosphoinositide signals in plant stress responses. Subcell Biochem 39:207–237

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sergio Batista for greenhouse assistance and Daniela Villamonte for technical assistance at the confocal microscope. This work was financially supported by UNMdP, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) to AML, LDF, GCP, JMD, PICT 1621 Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) to AML and GCP, HHMI International Early Career grant 55007430 to GCP (http://www.hhmi.org/node/11337), Netherlands Organisation for Scientific Research (NWO 867.15.020) to TM. R.T. acknowledges support from the Attraction and Insertion Program (PAI) from the National Commission for Scientific and Technological Research (CONICYT) Grant Number [PAI82130047].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriela C. Pagnussat or Ana M. Laxalt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Fino, L.M., D’Ambrosio, J.M., Tejos, R. et al. Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. Planta 245, 717–728 (2017). https://doi.org/10.1007/s00425-016-2634-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2634-z

Keywords

Navigation