Skip to main content
Log in

Functional characterization of ZmTPS7 reveals a maize τ-cadinol synthase involved in stress response

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Maize ( Zea mays ) terpene synthase 7 (ZmTPS7) was characterized as a τ-cadinol synthase, which exhibited constitutive and inducible gene expression patterns, suggesting involvement in stress response.

Maize produces a variety of terpenoids involved in defense response. Despite some terpene synthases (TPSs) responsible for these terpenoids have been characterized, biosynthesis of many terpenes, particularly sesquiterpenes, which were produced in response to biotic or abiotic stress, remains largely unknown. Here, we characterized ZmTPS7 biochemically through recombinant expression in Escherichia coli and detected that it catalyzed formation of a blend of sesquiterpenes and sesquiterpenoid alcohols as the sesquiterpene synthase through GC–MS analysis. Subsequently, the major product was purified and identified as τ-cadinol through nuclear magnetic resonance spectroscopy (NMR) analysis, which was also detected in maize tissues infected by pathogen fungus for the first time. ZmTPS7 constitutively expressed in aerial tissues while with trace amount of transcript in roots. Fungus spore inoculation and methyl jasmonate (MeJA) treatment induced gene expression of ZmTPS7 in leaves, while exogenous ABA induced ZmTPS7 dramatically in roots, suggesting that ZmTPS7 might be involved in stress response. τ-cadinol was quantified in infected maize tissues with the concentration of ~200 ng/g fresh weight, however, which was much lower than the inhibitory one on two tested necrotrophic fungi. Such evidences indicate that anti-fungal activity of τ-cadinol is not physiologically relevant, and further investigation is needed to clarify its biological functions in maize. Taken together, ZmTPS7 was characterized as the τ-cadinol synthase and suggested to be involved in stress response, which also increased the diversity of maize terpenoid profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FPP:

Farnesyl pyrophosphate

GGPP:

Geranylgeranyl pyrophosphate

MeJA:

Methyl jasmonate

NMR:

Nuclear magnetic resonance spectroscopy

TPS:

Terpene synthases

ZmTPS7:

Maize terpene synthase 7

References

  • Becker EM, Herrfurth C, Irmisch S, Köllner TG, Feussner I, Karlovsky P, Splivallo R (2014) Infection of corn ears by Fusarium spp. induces the emission of volatile sesquiterpenes. J Agric Food Chem 62(22):5226–5236

    Article  CAS  PubMed  Google Scholar 

  • Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7(1):75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordoloi M, Shukla VS, Nath SC, Sharma RP (1989) Naturally occuring cadinenes. Phytochemistry 28:2007–2037

    Article  CAS  Google Scholar 

  • Chen X, Chen Y, Heinstein P, Davisson V (1995) Cloning, expression, and characterization of (+)-delta-cadinene synthase a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys 324(2):255–266

    Article  CAS  PubMed  Google Scholar 

  • Cheng SS, Wu CL, Chang HT, Kao YT, Chang ST (2004) Antitermitic and antifungal activities of essential oil of Calocedrus formosana leaf and its composition. J Chem Ecol 30(10):1957–1967

    Article  CAS  PubMed  Google Scholar 

  • Cyr A, Wilderman PR, Determan M, Peters RJ (2007) A modular approach for facile biosynthesis of labdane-related diterpenes. J Am Chem Soc 129(21):6684–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degen T (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol 135(4):1928–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degenhardt J, Hiltpold I, Köllner TG, Frey M, Gierl A, Gershenzon J, Hibbard BE, Ellersieck MR, Turlings TC (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc Natl Acad Sci USA 106(32):13213–13218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150(4):1750–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana A, Held M, Fantaye CA, Turlings TC, Degenhardt J, Gershenzon J (2011) Attractiveness of constitutive and herbivore-induced sesquiterpene blends of maize to the parasitic wasp Cotesia marginiventris (Cresson). J Chem Ecol 37(6):582–591

    Article  CAS  PubMed  Google Scholar 

  • Frost CJ, Appel HM, Carlson JE, De Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10(6):490–498

    Article  PubMed  Google Scholar 

  • Fu J, Ren F, Lu X, Mao H, Xu M, Degenhardt J, Peters RJ, Wang Q (2016) A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism. Plant Physiol 170(2):742–751

    Article  CAS  PubMed  Google Scholar 

  • Gennadios HA, Gonzalez V, Di Costanzo L, Li A, Yu F, Miller DJ, Allemann RK, Christianson DW (2009) Crystal structure of (+)-δ-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Biochemistry 48(26):6175–6183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris LJ, Saparno A, Johnston A, Prisic S, Xu M, Allard S, Kathiresan A, Ouellet T, Peters RJ (2005) The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase. Plant Mol Biol 59(6):881–894

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104(13):5467–5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PE, Schmelz EA (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156(4):2082–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iijima Y, Davidovich-Rikanati R, Fridman E, Gang DR, Bar E, Lewinsohn E, Pichersky E (2004) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol 136(3):3724–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jullien F, Moja S, Bony A, Legrand S, Petit C, Benabdelkader T, Poirot K, Fiorucci S, Guitton Y, Nicole F, Baudino S, Magnard JL (2014) Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia. Plant Mol Biol 84(1–2):227–241

    Article  CAS  PubMed  Google Scholar 

  • Köllner TG, Schnee C, Gershenzon J, Degenhardt J (2004a) The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16(5):1115–1131

    Article  PubMed  PubMed Central  Google Scholar 

  • Köllner TG, Schnee C, Gershenzon J, Degenhardt J (2004b) The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distributions. Phytochemistry 65(13):1895–1902

    Article  PubMed  Google Scholar 

  • Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TC, Gershenzon J, Degenhardt J (2008a) A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20(2):482–494

    Article  PubMed  PubMed Central  Google Scholar 

  • Köllner TG, Schnee C, Li S, Svatos A, Schneider B, Gershenzon J, Degenhardt J (2008b) Protonation of a neutral (S)-beta-bisabolene intermediate is involved in (S)-beta-macrocarpene formation by the maize sesquiterpene synthases TPS6 and TPS11. J Biol Chem 283(30):20779–20788

    Article  PubMed  PubMed Central  Google Scholar 

  • Köllner TG, Gershenzon J, Degenhardt J (2009) Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 70(9):1139–1145

    Article  PubMed  Google Scholar 

  • Köllner TG, Lenk C, Schnee C, Kopke S, Lindemann P, Gershenzon J, Degenhardt J (2013) Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. BMC Plant Biol 13:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell Environ 35(1):53–60

    Article  CAS  Google Scholar 

  • Lin C, Shen B, Xu Z, Köllner TG, Degenhardt J, Dooner HK (2008) Characterization of the monoterpene synthase gene tps26, the ortholog of a gene induced by insect herbivory in maize. Plant Physiol 146(3):940–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maag D, Erb M, Köllner TG, Gershenzon J (2015) Defensive weapons and defense signals in plants: some metabolites serve both roles. BioEssays 37(2):167–174

    Article  PubMed  Google Scholar 

  • Mao H, Liu J, Ren F, Peters RJ, Wang Q (2016) Characterization of CYP71Z18 indicates a role in maize zealexin biosynthesis. Phytochemistry 121:4–10

    Article  CAS  PubMed  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737

    Article  CAS  PubMed  Google Scholar 

  • Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci USA 108(13):5455–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79(4):659–678

    Article  CAS  PubMed  Google Scholar 

  • Schnee C, Köllner TG, Held M, Turlings TC, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103(4):1129–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Du GJ, Qi LW, Williams S, Wang CZ, Yuan CS (2010) Hydrophobic constituents and their potential anticancer activities from Devil’s Club Oplopanax horridus. J Ethnopharmacol 132(1):280–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148:63–106

    CAS  PubMed  Google Scholar 

  • Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42(5):757–771

    Article  CAS  PubMed  Google Scholar 

  • Vaughan M, Wang Q, Webster FX et al (2013) Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 25(3):1108–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan MM, Christensen S, Schmelz EA, Huffaker A, McAuslane HJ, Alborn HT, Romero M, Allen LH, Teal PE (2015) Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant, Cell Environ 38(11):2195–2207

    Article  CAS  Google Scholar 

  • Wang Q, Hillwig ML, Peters RJ (2011) CYP99A3: functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. Plant J 65(1):87–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the fund for distinguished young scientists of Sichuan Province (2014JQ0038) and start-up fund from Sichuan Agricultural University to Q.W. We appreciate the help of Dr. Reuben Peters at Iowa State University for providing the plasmid pGG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2016_2570_MOESM1_ESM.pdf

Fig. S1 GC–MS analysis of ZmTPS7 minor products. Fig. S2 GC–MS analysis of ZmTPS7 activity with GGPP as the substrate. Table S1 Cis-element predication of 1.6-kb ZmTPS7 promoter. Fig. S3 Anti-fungal activity of (E)-β-caryophyllene, α-bisabolol and carbendazim on F. graminearum. Fig. S4 qRT-PCR analysis of ZmTPS7 expression in aboveground tissues with ABA treatment on roots (PDF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Mao, H., Liang, J. et al. Functional characterization of ZmTPS7 reveals a maize τ-cadinol synthase involved in stress response. Planta 244, 1065–1074 (2016). https://doi.org/10.1007/s00425-016-2570-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2570-y

Keywords

Navigation