Skip to main content

Advertisement

Log in

Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion Macauba palm fruiting is supra-annual, and the fruit growth follows a double sigmoidal trend. The prevailing compound in the mesocarp differs as the fruit ages, oil being the major storage compound.

Acrocomia aculeata, macauba palm, is a conspicuous species in the tropical Americas. Because the species is highly productive in oil-rich fruits, it is the subject of domestication as an alternative vegetable oil crop, especially as a bioenergy feedstock. This detailed study first presents the macauba fruit growth and development patterns, morphological changes and accumulation of organic compounds. Fruits were monitored weekly in a natural population. The fruiting was supra-annual, and the fruit growth curve followed a double sigmoidal trend with four stages (S): SI—slow growth and negligible differentiation of the fruit inner parts; SII—first growth spurt and visible, but not complete, differentiation of the inner parts; SIII—growth slowed down and all structures attained differentiation; and SIV—second growth spurt and fruit maturation. In SII, the exocarp and endocarp were the main contributors to fruit growth, whereas the mesocarp and endosperm were responsible for most of the weight gain during SIV. In comparison with starch and oil, soluble sugars did not accumulate in the mesocarp. However, starch was transitory and fueled the oil synthesis. The protective layers, the exocarp and endocarp, fulfilling their ecological roles, were the first to reach maturity, followed by the storage tissues, the mesocarp, and endosperm. The amount and nature of organic compounds in the mesocarp varied with the fruit development and growth stages, and oil was the main and final storage material. The description of macauba fruit’s transformations and their temporal order may be of importance for future ecological and agronomical references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu AG, Priolli RHG, Azevedo-Filho JA, Nucci SM, Zucchi MI, Coelho RM, Colombo CA (2012) The genetic structure and mating system of Acrocomia aculeata (Arecaceae). Genet Mol Biol 35:119–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Quarashi AD (2010) Physico–chemical changes during development and ripening of ‘Helali’ date palm fruit. JFAE 8:404–408

    Google Scholar 

  • Bacha MA, Nasr TA, Shaheen MA (1987) Changes in physical and chemical characteristics of the fruits of four date palm cultivars. Proc Saudi Biol Soc 10:285–295

    Google Scholar 

  • Balbontín C, Ayala H, Rubilar J, Cote J, Figueroa CR (2014) Transcriptional analysis of cell wall and cuticle related genes during fruit development of two sweet cherry cultivars with contrasting levels of cracking tolerance. Chil J Agr Res 74:162–169

    Article  Google Scholar 

  • Beauvoit BP, Colombié S, Monier A et al (2014) Model-assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion. Plant Cell 26:3224–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltrán G, Del Rio C, Sanchez S, Martinez L (2004) Seasonal changes in olive fruit characteristics and oil accumulation during ripening process. JSFA 84:1783–1790

    Article  Google Scholar 

  • Blumenfeld A, Gazit S (1974) Development of seeded and seedless avocado fruits. JASHS 99:442–448

    Google Scholar 

  • Bora PS, Rocha RVM (2004) Macaíba palm: fatty and amino acids composition of fruits. Cien Tecnol Aliment 4:158–162

    Article  CAS  Google Scholar 

  • Broschat TK, Meerow AW (2000) Ornamental palm horticulture. University of Florida Press, Florida

    Google Scholar 

  • Buckeridge MS, Dos Santos HP, Tiné MAS (2000) Mobilization of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 38:141–156

    Article  CAS  Google Scholar 

  • Chesson PL (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Coimbra MC, Jorge N (2011a) Characterization of the pulp and kernel oils from Sygrus oleracea, Syagrus romanzoffiana and Acrocomia aculeata. J Food Sci 76:1151–1161

    Article  Google Scholar 

  • Coimbra MC, Jorge N (2011b) Proximate composition of guariroba (Syagrus oleracea), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata) palm fruits. Food Res Int 44:2139–2142

    Article  CAS  Google Scholar 

  • Corley RHV, Tinker PB (2003) The oil palm. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Couvreur TLP, Baker WJ (2013) Tropical rain forest evolution: palms as a model group. BMC Biol 11:48. doi:10.1186/1741-7007-11-48

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey PM, Harborne JB (1997) Plant biochemistry. Academic Press, London

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Calorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Eiserhardt WL, Svenning JC, Kissling WD, Balsslec H (2011) Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Ann Bot 108:1391–1416

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes Filho EI (2010) Mapa de solos do Estado de Minas Gerais. http://www.feam.br/noticias/1/1355-mapa-de-solos. Accessed 2 Dec 2014

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonçalves DB, Batista AF, Rodrigues MQ, Nogueira KM, Santos VL (2013) Ethanol production from macaúba (Acrocomia aculeata) presscake hemicellulosic hydrolysate by Candida boidinii UFMG. Bioresour Technol 14:146–261

    Google Scholar 

  • Henderson A, Galeano G, Bernal R (1995) Palms of the Americas. Princeton University Press, Princeton

    Google Scholar 

  • INMET (1992) Instituto Nacional de Meteorologia. http://www.inmet.gov.br/portal/index.php?r=home/page&page=rede_esracoes_auto_graf. Accessed 14 Aug 2014

  • Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where? Annu Rev Ecol Evol Syst 33:427–447

    Article  Google Scholar 

  • Kim YS, Jones LS, Dong A et al (2003) Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins. Protein Sci 12:1252–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanes ECM, Costa PMA, Motoike SY (2014) Alternative fuels: brazil promotes aviation biofuels. Nature 511:31

    Article  PubMed  Google Scholar 

  • Lanes ECM, Motoike SY, Kuki KN, Nick C, Freitas RD (2015) Molecular characterization and population structure of the macaw palm, Acrocomia aculeata (Arecaceae), ex situ germplasm collection using microsatellites markers. J Hered 106:102–112

    Article  PubMed  Google Scholar 

  • Lescano CH, Oliveira IP, Silva LR et al (2015) Nutrients content, characterization and oil extraction from Acrocomia aculeata (Jacq.) Lodd. Fruits. AJFS 9:113–119

    CAS  Google Scholar 

  • Lorenzi H, Noblick LR, Kahn F, Ferreira E (2010) Flora Brasileira: Arecaceae (palmeiras). Plantarum, São Paulo

    Google Scholar 

  • Martins AD (2013) Radiação gama e secagem na conservação da qualidade do óleo de frutos de macaúba. Dissertation, Universidade Federal de Viçosa, Brazil

  • McCready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylose in vegetables. Application to peas. Anal Chem 22:1156–1158

    Article  CAS  Google Scholar 

  • Mialet-Serra I, Clement-Vidal A, Sonderegger N et al (2005) Assimilate storage in vegetative organs of coconut (Cocos nucifera). Exp Agr 41:161–174

    Article  CAS  Google Scholar 

  • Mialet-Serra I, Clement-Vidal A, Roupsard O, Jourdan C, Labouisse JP, Dingkuhn M (2008) Whole-plant adjustments in coconut (Cocos nucifera) in response to sink–source imbalance. Tree Physiol 28:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Monselise SP (1986) Handbook of fruit set and development. CRC Press, Boca Raton

    Google Scholar 

  • Murphy DJ (1993) Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog Lipid Res 32:247–280

    Article  CAS  PubMed  Google Scholar 

  • Norden N, Chave J, Belbenoit P (2007) Mast fruiting is a frequent strategy in woody species of eastern South America. PLoS One 2(10):e1079

    Article  PubMed  PubMed Central  Google Scholar 

  • Omar AKS (2014) Effect of pollen quantity on the anatomy and the quality of ‘Zaghloul’ date palm fruit (Phoenix dactylifera, L.). AAAS 2:01–08

    Google Scholar 

  • Pavel EW, DeJong TM (1993) Source- and sink-limited growth periods of developing peach fruits indicated by relative growth rate analysis. AJSHS 118:820–824

    Google Scholar 

  • Pires TP, Souza ES, Kuki KN, Motoike SY (2013) Ecophysiological traits of the macaw palm: a contribution towards the domestication of a novel oil crop. Ind Crops Prod 44:200–210

    Article  CAS  Google Scholar 

  • Prabhakaran Nair KP (2010) The agronomy and economy of important tree crops of the developing world. Elsevier, Boston

    Google Scholar 

  • Reis SB, Simões MOM, Ribeiro LM (2012) Pericarp development in the macaw palm Acrocomia aculeata (Arecaceae). Rodriguésia 63:541–549

    Article  Google Scholar 

  • Ribeiro LM, Souza PP, Rodrigues-Junior AG, Oliveira TGS, Garcia QS (2011) Overcoming dormancy in macaw palm diaspores, a tropical species with potential for use as bio-fuel. Seed Sci Technol 39:303–317

    Article  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JMS, Murray JAH (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas-Robles R, Stiles FG (2009) Analysis of a supra-annual cycle: reproductive phenology of the palm Oenocarpus bataua in a forest of the Colombian Andes. J Trop Ecol 25:41–51

    Article  Google Scholar 

  • Roth I (1977) Fruits of angiosperms. In: Encyclopedia of plant anatomy. Gebrüder Borntraeger, Berlin

  • Roth I (1987) Stratification of a tropical forest as seen in dispersal types. In: Lieth H (ed) Tasks for vegetation science, vol 17. Springer, Dordrecht

    Google Scholar 

  • Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665

    Article  CAS  PubMed  Google Scholar 

  • Scariot AO (1998) Seed dispersal and predation of the palm Acrocomia aculeata. Principes 42:5–8

    Google Scholar 

  • Scariot AO, Lleras E, Hay JD (1991) Reproductive biology of the palm Acrocomia aculeata in central Brazil. Biotropica 23:12–22

    Article  Google Scholar 

  • Scariot AO, Lleras E, Hay JD (1995) Flowering and fruiting phenology of the palm Acrocomia aculeata: patterns and consequences. Biotropica 27:168–173

    Article  Google Scholar 

  • Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280

    Article  CAS  PubMed  Google Scholar 

  • Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241

    Article  CAS  PubMed  Google Scholar 

  • Simmons AT, Gurr GM (2005) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agr Forest Entomol 7:265–276

    Article  Google Scholar 

  • Somogyi M (1945) A new reagent for the determination of sugars. J Biol Chem 160:61–68

    CAS  Google Scholar 

  • Spjut RW (1994) A systematic treatment of fruit types. Mem N.Y Bot Gard 7:1–182

    Google Scholar 

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate consequences. Annu Rev Ecol Syst 12:253–279

    Article  Google Scholar 

  • Teh HF, Neoh BK, Hong MPL et al (2013) Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp. PLoS One 8(4):e61344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas RL, Sew PH, Mok CK, Chan KW, Easau PT, Ng SC (1971) Fruit ripening in the oil-palm Elaeis guineensis. Ann Bot 35:1219–1225

    Google Scholar 

  • Toldam-Andersen TB, Hansen P (1997) Growth and development in black currant (Ribes nigrum). III. Seasonal changes in sugars, organic acids, chlorophyll and anthocyanins and their possible metabolic background. J Hortic Sci 72:155–169

    Article  CAS  Google Scholar 

  • Tomlinson PB (2006) The uniqueness of palms. Bot J Linn Soc 151:5–14

    Article  Google Scholar 

  • Tranbarger TJ, Dussert S, Joët T et al (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156:564–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • TROPICOS (2016) Missouri botanical garden. http://www.tropicos.org/Name/2401428?tab=synonyms. Accessed 2 June 2016

  • Turner IM (2001) The ecology of trees in the tropical rain forest. In: Cambridge tropical biology series. Cambridge University Press, Cambridge

  • Vilas Boas MA, Carneiro ACO, Vital BR, Carvalho AMM, Martins MA (2010) Efeito da temperatura de carbonização e dos resíduos de macaúba na produção de carvão vegetal. Sci For 38:481–490

    Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wandeck FA, Justo PG (1988) A macaúba, fonte energética e insumo industrial: sua significação econômica no Brasil. Proccedings of the Simpósio sobre Cerrado e Savanas in Brasília, Brazil 1:541–577

  • Wang F, Sanz A, Brenner M, Smith A (1993) Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol 101:321–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yakushiji H, Nonami H, Fukuyama T, Ono S, Takagi N, Hashimoto Y (1996) Sugar accumulation enhanced by osmoregulation in Satsuma Mandarin fruit. JASHS 121:466–472

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their valuable reviews and corrections. We thank the Foundation for Research Support of Minas Gerais State (Fapemig), the Brazilian Federal Agency for Support and Evaluation of Graduate Education (Capes) for the scholarships. This work was supported by the Brazilian Petroleum Company (Petrobras) (CT 00500061571109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kacilda Naomi Kuki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2016_2558_MOESM1_ESM.docx

Interactive software (app) MacFruit 1.0. This app illustrates the qualitative and quantitative changes of developing macauba fruit and can run in both mobile devices (Android operating system) and desk computers (use proper emulators). Download link: https://www.dropbox.com/sh/mu0ppznqwgcanev/AACWxa2xL-wGHX1PNSdiKr71a?dl=0. (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montoya, S.G., Motoike, S.Y., Kuki, K.N. et al. Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop. Planta 244, 927–938 (2016). https://doi.org/10.1007/s00425-016-2558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2558-7

Keywords

Navigation