Skip to main content
Log in

Cotton cytosolic pyruvate kinase GhPK6 participates in fast fiber elongation regulation in a ROS-mediated manner

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Cotton cytosolic pyruvate kinase GhPK6 is preferentially expressed in the late stage of fiber elongation process, transgenic experiments indicated that its expression level was negatively correlated to cell expansion rate.

Abstract

Pyruvate kinase (PK) plays vital regulatory roles in rapid cell growth in mammals. However, the function of PK in plant cell growth remains unclear. In allotetraploid upland cotton (Gossypium hirsutum L.), a total of 33 PK genes are encoded by the genome. Analysis of the transcriptome data indicated that only two cytosolic PK genes, GhPK6 and its duplicated gene GhPK26, are preferentially expressed in elongating cotton fiber cells. RT-qPCR and western blot analyses revealed that the expression of GhPK6 was negatively correlated with fiber elongation rate, which well explains the observed sharp increase of cytosolic PK activity at the end of fast fiber elongation process. Furthermore, virus-induced gene silencing of GhPK6 in cotton plants resulted in increased fiber cell elongation and reduced reactive oxygen species (ROS) accumulation. On the contrary, Arabidopsis plants ectopically expressing GhPK6 exhibited ROS-mediated growth inhibition, whereas the addition of ROS scavenging reagents could partly rescue this inhibition. These data collectively suggested that GhPK6 might play an important role in regulating cotton fiber elongation in a ROS-dependent inhibition manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Affourtit C, Moore AL (2004) Purification of the plant alternative oxidase from Arum maculatum: measurement, stability and metal requirement. Biochim Biophys Acta 1608:181–189

    Article  CAS  PubMed  Google Scholar 

  • Ambasht PK, Kayastha AM (2002) Plant pyruvate kinase. Biol Plant 45:1–10

    Article  CAS  Google Scholar 

  • Andre C, Froehlich JE, Moll MR, Benning C (2007) A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19:2006–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54:911–929

    Article  CAS  PubMed  Google Scholar 

  • Basra AS, Malik CP (1983) Dark metabolism of CO2 during fibre elongation of two cottons differing in fiber lengths. J Exp Bot 34:1–9

    Article  CAS  Google Scholar 

  • Baud S, Wuillème S, Dubreucq B, de Almeida A, Vuagnat C, Lepiniec L, Miquel M, Rochat C (2007) Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J 52:405–419

    Article  CAS  PubMed  Google Scholar 

  • Chen A, He S, Li F, Li Z, Ding M, Liu Q, Rong J (2012) Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns. BMC Plant Biol 12:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumor growth. Nature 452:230–234

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa RS, Beasley CA, Ting IP (1975) Osmoregulation in cotton fiber: accumulation of potassium and malate during growth. Plant Physiol 56:394–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong CH, Zolman BK, Bartel B, Leea BH, Stevenson B, Agarwal M, Zhu JK (2009) Disruption of Arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling. Mol Plant 2:59–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  CAS  PubMed  Google Scholar 

  • Gleason C, Huang S, Thatcher LF, Foley RC, Anderson CR, Carroll AJ, Millar AH, Singh KB (2011) Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proc Natl Acad Sci USA 108:10768–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo K, Du X, Tu L, Tang W, Wang P, Wang M, Liu Z, Zhang X (2016) Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). J Exp Bot 67:3289–3301

    Article  PubMed  PubMed Central  Google Scholar 

  • Han LB, Li YB, Wang HY et al (2013) The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell 25:4421–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Tan J, Tu L, Zhang X (2014) A peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fiber. Plant Biotechnol J 12:861–871

    Article  CAS  PubMed  Google Scholar 

  • Hoefnagel M, Rich PR, Zhang Q, Wiskich JT (1997) Substrate kinetics of the plant mitochondrial alternative oxidase and the effects of pyruvate. Plant Physiol 115:1145–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Israelsen WJ, Dayton TL, Davidson SM et al (2013) PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155:397–409

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkham MB, Gardner WR, Gerloff GC (1972) Regulation of cell division and cell enlargement by turgor pressure. Plant Physiol 49:961–962

    Article  Google Scholar 

  • Knowles VL, McHugh SG, Hu Z, Dennis DT, Miki BL, Plaxton WC (1998) Altered growth of transgenic tobacco lacking leaf cytosolic pyruvate kinase. Plant Physiol 116:45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kumar K, Pandey P, Rajamani V, Padmalatha KV, Dhandapani G, Kanakachari M, Leelavathi S, Kumar PA, Reddy VS (2013) Glycoproteome of elongating cotton fiber cells. Mol Cell Proteomics 12:3677–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laties GG (1974) Isolation of mitochondria from plant material. Method Enzymol 31:589–600

    Article  CAS  Google Scholar 

  • Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XB, Fan XP, Wang XL, Cai L, Yang WC (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HB, Qin YM, Pang Y, Song WQ, Mei WQ, Zhu YX (2007) A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. New Phytol 175:462–471

    Article  CAS  PubMed  Google Scholar 

  • Li XR, Wang L, Ruan YL (2010) Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation. J Exp Bot 61:287–295

    Article  CAS  PubMed  Google Scholar 

  • Li F, Fan G, Lu C et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530

    Article  PubMed  Google Scholar 

  • Ma L, Wang Y, Yan G, Wei S, Zhou D, Kuang M, Fang D, Xu S, Yang W (2016) Global analysis of the developmental dynamics of Gossypium hirsutum based on strand-specific transcriptome. Physiol Plantarum. doi:10.1111/ppl.12432

    Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Oliver SN, Lunn JE, Urbanczyk-Wochniak E, Lytovchenko A, van Dongen JT, Faix B, Schmälzlin E, Fernie AR, Geigenberger P (2008) Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase. Plant Physiol 148:1640–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX (2010) Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 9:2019–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Ann Rev Plant Biol 47:185–214

    Article  CAS  Google Scholar 

  • Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A (1999) The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol 119:849–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin YM, Zhu YX (2011) How cotton fibers elongate: a tale of linear cell-growth mode. Curr Opin Plant Biol 14:106–111

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Ye J, Geng YF, Sun YW, Gao SQ, Zhang BP, Chen W, Chua NH (2012) Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing. Plant Physiol 160:738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmusson AG, Fernie AR, van Dongen JT (2009) Alternative oxidase: a defence against metabolic fluctuations? Physiol Plantarum 137:371–382

    Article  CAS  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansion. Plant Cell 13:47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer TP, Oestreicher G, Hogue P (1973) Regulation of succinate dehyrogenase in higher plants: I. some general characteristics of the membrane-bound enzyme. Plant Physiol 52:616–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smart LB, Vojdani F, Maeshima M, Wilkins TA (1998) Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol 116:1539–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens B, Steffen-Heins A, Sauter M (2013) Reactive oxygen species mediate growth and death in submerged plants. Front Plant Sci 4:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang GQ, Hardin SC, Dewey R, Huber SC (2003) A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds. Plant J 34:77–93

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Tu L, Yang X, Tan J, Deng F, Hao J, Guo K, Lindsey K, Zhang X (2014) The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol 202:509–520

    Article  CAS  PubMed  Google Scholar 

  • Thaker VS, Rabadia VS, Singh YD (1999) Physiological and biochemical changes associated with cotton fiber development. VII. Carbohydrate metabolism. Acta Physiol Plant 21:57–61

    Article  CAS  Google Scholar 

  • Turner WL, Knowles VL, Plaxton WC (2005) Cytosolic pyruvate kinase: subunit composition, activity, and amount in developing castor and soybean seeds, and biochemical characterization of the purified castor seed enzyme. Planta 222:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Vander Heiden MG, Locasale JW, Swanson KD et al (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li XR, Lian H, Ni DA, He YK, Chen XY, Ruan YL (2010) Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol 154:744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue W, Wang Z, Du M, Liu Y, Liu JY (2013) Genome-wide analysis of small RNAs reveals eight fiber elongation-related and 257 novel microRNAs in elongating cotton fiber cells. BMC Genom 14:629

    Article  CAS  Google Scholar 

  • Yang YW, Bian SM, Yao Y, Liu JY (2008) Comparative proteomic analysis provides new insights into the fiber elongating process in cotton. J Proteome Res 7:4623–4637

    Article  CAS  PubMed  Google Scholar 

  • Zhang B (2015) A genome-wide survey of glycolytic genes in diploid Asian cotton (Gossypium arboreum). Plant Gene 4:1–9

    Article  Google Scholar 

  • Zhang D, Zhang T, Guo W (2010) Effect of H2O2 on fiber initiation using fiber retardation initiation mutants in cotton (Gossypium hirsutum). J Plant Physiol 167:393–399

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zheng X, Song S et al (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fibre yield and quality. Nat Biotechnol 15:453–458

    Article  Google Scholar 

  • Zhang Y, Xiao W, Luo L, Pang J, Rong W, He C (2012) Downregulation of OsPK1, a cytosolic pyruvate kinase, by T-DNA insertion causes dwarfism and panicle enclosure in rice. Planta 235:25–38

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Yang YW, Zhang Y, Liu JY (2013) A high-confidence reference dataset of differentially expressed proteins in elongating cotton fiber cells. Proteomics 13:1159–1163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Yule Liu for the gift of the VIGS vector pTRV1 and pTRV2. We thank members of our laboratory for their helpful discussions. This study was supported by the State Key Basic Research and Development Plan (2010CB126003), the National Natural Science Foundation of China (90608016), the National Transgenic Animals and Plants Research Project (2009ZX08005-026B) and the China Postdoctoral Science Foundation (2014M550074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Yuan Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2016_2557_MOESM1_ESM.docx

Figure S1. Phenotype of the elongating cotton fibers. Figure S2. Sequence alignment of GhPK6, GhPK26 and the encoding gene of the differentially expressed pyruvate kinase protein identified by 2-DE. Figure S3. Silencing of GhPK6 expression in cotton plants through VIGS. Figure S4. Phenotypes of transgenic Arabidopsis plants ectopically expressing GhPK6. Figure S5. Dynamic of succinate dehydrogenase and alternative oxidase activities in cotton fiber elongation process. Figure S6. A putative model for the GhPK6-mediated mechanistic links between cellular metabolism and growth control in cotton fibers. (DOCX 1812 kb)

Table S1. Primers used in this study. (DOCX 12 kb)

Table S2. Sequences of peptides for antibody preparation. (DOCX 12 kb)

Table S3. Properties of the pyruvate kinase genes and the deduced proteins in Gossypium hirsutum. (XLSX 12 kb)

425_2016_2557_MOESM5_ESM.xlsx

Table S4. Expression of the pyruvate kinase genes in different cotton tissues based on RNA sequencing data. (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Liu, JY. Cotton cytosolic pyruvate kinase GhPK6 participates in fast fiber elongation regulation in a ROS-mediated manner. Planta 244, 915–926 (2016). https://doi.org/10.1007/s00425-016-2557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2557-8

Keywords

Navigation