Skip to main content
Log in

Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits.

Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig ‘Brown Turkey’. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained chlorophyll degradation in the parthenocarpic fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GluTR:

Glutamyl tRNA reductase

CAO:

Chlorophyll a oxygenase

CLS:

Chlorophyll synthase

CBR:

Chlorophyll b reductase

CLH:

chloropyllase

SGR:

Stay-green

PPH:

Pheophytin pheophorbide hydrolase

PAO:

Pheophorbide a oxygenase

RCCR:

Red chlorophyll catabolite reductase

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubry S, Mani J, Hörtensteiner S (2008) Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol 67:243–256

    Article  CAS  PubMed  Google Scholar 

  • Azoulay-Shemer T, Harpaz-Saad S, Eyal Y, Goldschmidt EE (2011) Pathway of chlorophyll breakdown in citrus fruit peel, as compared with Arabidopsis leaves and other plant systems. Acta Hortic 892:335–342

    Article  CAS  Google Scholar 

  • Barry CS, McQuinn RP, Chung MY, Besuden A, Giovannoni JJ (2008) Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol 147:179–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chessa I (1997) Fig. In: Mitra S (ed) Postharvest physiology and storage of tropical and subtropical fruits. CAB International, Wallingford, pp 245–268

    Google Scholar 

  • Chung DW, Pružinská A, Hörtensteiner S, Ort DR (2006) The role of pheophorbide a oxygenase expression and activity in the canola green seed problem. Plant Physiol 142:88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane JC (1986) CRC handbook of fruit set and development. CRC Press, Boca Raton

    Google Scholar 

  • Crane JC, Blondeau R (1949) The use of growth-regulating chemicals to induce parthenocarpic fruit in the calimyrna fig. Plant Physiol 24:44–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane JC, Van Overbeek J (1965) Kinin-induced parthenocarpy in the fig, Ficus carica L. Science 147:1468–1469

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Pelayo R, Gallardo-Guerrero L, Hornero-Méndez D (2014) Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Res Int 65:272–281

    Article  CAS  Google Scholar 

  • Eckhardt U, Grimm B, Hörtensteiner S (2004) Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56:1–14

    Article  CAS  PubMed  Google Scholar 

  • Espineda CE, Linford AS, Devine D, Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:10507–10511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaishman MA, Rodov V, Stover E (2008) The fig: botany, horticulture, and breeding. Hortic Rev 34:113–196

    CAS  Google Scholar 

  • Freiman ZE, Doron-Faigenboim A, Dasmohapatra R, Yablovitz Z, Flaishman MA (2014) High-throughput sequencing analysis of common fig (Ficus carica L.) transcriptome during fruit ripening. Tree Genet Genomes 10:923–935

    Article  Google Scholar 

  • Freiman ZE, Rosianskey Y, Dasmohapatra R, Kamara I, Flaishman MA (2015) The ambiguous ripening nature of the fig (Ficus carica L.) fruit: a gene-expression study of potential ripening regulators and ethylene-related genes. J Exp Bot 66:3309–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Given NK, Venis MA, Gierson D (1988) Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta 174:402–406

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Gupta S, Gupta SM, Sane AP, Kumar N (2012) Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown. Mol Biol Rep 39:7133–7142

    Article  CAS  PubMed  Google Scholar 

  • Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Stefan H, Gidoni D, Gal-On A, Goldschmidt EE (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell 19:1007–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A (2009) Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J Biol Chem 284:17449–17456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162

    Article  PubMed  Google Scholar 

  • Hörtensteiner S, Vicentini F, Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129:237–246

    Article  Google Scholar 

  • Jaakola L, Pirttilä AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    Article  CAS  PubMed  Google Scholar 

  • Jia H-F, Chai Y-M, Li C-L, Lu D, Luo J-J, Qin L, Shen Y-Y (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kislev ME, Hartmann A, Bar-Yosef O (2006) Early domesticated fig in the Jordan Valley. Science 312:1372–1374

    Article  CAS  PubMed  Google Scholar 

  • Knee M (1972) Anthocyanin, carotenoid, and chlorophyll changes in the peel of Cox’s Orange Pippin apples during ripening on and off the tree. J Exp Bot 23:184–196

    Article  CAS  Google Scholar 

  • Kunugi M, Takabayashi A, Tanaka A (2013) Evolutionary changes in chlorophyllide a oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in Micromonas. J Biol Chem 288:19330–19341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupferman EM (1986) The role of ethylene in determining apple harvest and storage life. Postharvest Pomol Newsl 4:1–3

    Google Scholar 

  • Lira BS, de Setta N, Rosado D, Almeida J, Freschi L, Rossi M (2014) Plant degreening: evolution and expression of tomato (Solanum lycopersicum) dephytylation enzymes. Gene 546:359–366

    Article  CAS  PubMed  Google Scholar 

  • Lodhi F, Bradley MV, Crane JC (1969) Auxins and gibberellin-like substances in parthenocarpic and non-parthenocarpic syconia of Ficus carica L., cv. King. Plant Physiol 44:555–561

    Article  CAS  PubMed  Google Scholar 

  • Marei N, Crane JC (1971) Growth and respiratory response of fig (Ficus carica L. cv. Mission) fruits to ethylene. Plant Physiol 48:249–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Biol 50:67–95

    Article  CAS  Google Scholar 

  • Mazzucato A, Taddei AR, Soressi GP (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125:107–114

    CAS  PubMed  Google Scholar 

  • Medlicott AP, Bhogal M, Reynolds SB (1986) Changes in peel pigmentation during ripening of mango fruit (Mangifera indica var. Tommy Atkins). Ann Appl Biol 109:651–656

    Article  Google Scholar 

  • Merzlyak MN, Solovchenko AE, Gitelson AA (2003) Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol 27:197–211

    Article  CAS  Google Scholar 

  • Michailides TJ, Morgan DP, Felts D, Doster MA (2008) Control of decay in caprifigs and calimyrna figs with fungicides. Acta Hortic 798:269–278

    Article  Google Scholar 

  • Montefiori M, McGhie TK, Hallett IC, Costa G (2009) Changes in pigments and plastid ultrastructure during ripening of green-fleshed and yellow-fleshed kiwifruit. Sci Hortic 119:377–387

    Article  CAS  Google Scholar 

  • Oster U, Tanaka R, Tanaka A, Rüdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310

    Article  CAS  PubMed  Google Scholar 

  • Oukabli A, Mamouni A, Laghezali M, Ater M, Roger JP, Khadari B (2001) Local caprifig tree characterization and analysis of interest for pollination. In: López Corrales M, Bernalte García MJ (eds) Proceedings of II international symposium on Fig 605, Caceres, Spain. ISHS Acta Hortic, pp 61–64

  • Park S-Y, Yu J-W, Park J-S, Li J, Yoo S-C, Lee N-Y, Lee S-K, Jeong S-W, Seo HS, Koh H-J (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul V, Pandey R, Srivastava GC (2012) The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—an overview. J Food Sci Technol 49:1–21

    Article  CAS  PubMed  Google Scholar 

  • Pilkington SM, Montefiori M, Jameson PE, Allan AC (2012) The control of chlorophyll levels in maturing kiwifruit. Planta 236:1615–1628

    Article  CAS  PubMed  Google Scholar 

  • Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AC, Boldingh HL, McAtee PA, Gunaseelan K, Luo Z, Atkinson RG, David KM, Burdon JN, Schaffer RJ (2011) Fruit development of the diploid kiwifruit, Actinidia chinensis ‘Hort16A’. BMC Plant Biol 11:182. doi:10.1186/1471-2229-11-182

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodoni S, Vicentini F, Schellenberg M, Matile P, Hörtensteiner S (1997) Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chlorophyll breakdown. Plant Physiol 115:677–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong H, Tang Y, Zhang H, Wu P, Chen Y, Li M, Wu G, Jiang H (2013) The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J Plant Physiol 170:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Rosianski Y, Freiman ZE, Milo Cochavi S, Yablovitz Z, Kerem Z, Flaishman MA (2016) Advanced analysis of developmental and ripening characteristics of pollinated common-type fig (Ficus carica L.). Sci Hortic 198:98–106

    Article  Google Scholar 

  • Sakuraba Y, Schelbert S, Park S-Y, Han S-H, Lee B-D, Andrès CB, Kessler F, Hörtensteiner S, Paek N-C (2012) STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba Y, Kim YS, Yoo SC, Hörtensteiner S, Paek NC (2013) 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. Biochem Biophys Res Commun 430:32–37

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Kim D, Kim YS, Hörtensteiner S, Paek NC (2014) Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett 588:3830–3837

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Domnech N, Jimnez-Bemúdez S, Matas AJ, Rose JKC, Muñoz-Blanco J, Mercado JA, Quesada MA (2008) Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. J Exp Bot 59:2769–2779

    Article  Google Scholar 

  • Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA 104:14169–14174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M (2009) Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57:120–131

    Article  CAS  PubMed  Google Scholar 

  • Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk N, Schelbert S, Kanwischer M, Goldschmidt EE, Dörmann P, Hörtensteiner S (2007) The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett 581:5517–5525

    Article  CAS  PubMed  Google Scholar 

  • Schmid HC, Oster U, Kögel J, Lenz S, Rüdiger W (2001) Cloning and characterisation of chlorophyll synthase from Avena sativa. Biol Chem 382:903–911

    Article  CAS  PubMed  Google Scholar 

  • Schubert W-D, Moser J, Schauer S, Heinz DW, Jahn D (2002) Structure and function of glutamyl-tRNA reductase, the first enzyme of tetrapyrrole biosynthesis in plants and prokaryotes. Photosynth Res 74:205–215

    Article  CAS  PubMed  Google Scholar 

  • Seymour GB, McGlasson WB (1993) Melons. In: Seymour GB, Taylor JE, Tucker GA (eds) Biochemistry of fruit ripening. Springer, Chapman & Hall, London, pp 273–290

    Chapter  Google Scholar 

  • Silva JA, da Costa TS, Lucchetta L, Marini LJ, Zanuzo MR, Nora L, Nora FR, Twyman RM, Rombaldi CV (2004) Characterization of ripening behavior in transgenic melons expressing an antisense 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene from apple. Postharvest Biol Technol 32:263–268

    Article  CAS  Google Scholar 

  • Sugishima M, Kitamori Y, Noguchi M, Kohchi T, Fukuyama K (2009) Crystal structure of red chlorophyll catabolite reductase: enlargement of the ferredoxin-dependent bilin reductase family. J Mol Biol 389:376–387

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96:15362–15367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlig BA, Clingeleffer PR (1998) Ripening characteristics of the fruit from Vitis vinifera L. drying cultivars Sultana and Merbein seedless under furrow irrigation. Am J Enol Vitic 49:375–382

    Google Scholar 

  • Wright H, DeLong J, Lada R, Prange R (2009) The relationship between water status and chlorophyll a fluorescence in grapes (Vitis spp.). Postharvest Biol Technol 51:193–199

    Article  CAS  Google Scholar 

  • Wu M, Kubota C (2008) Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci Hortic 116:122–129

    Article  CAS  Google Scholar 

  • Yamasato A, Nagata N, Tanaka R, Tanaka A (2005) The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17:1585–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Israeli Ministry of Agriculture, Bet Dagan, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe A. Flaishman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10093 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosianskey, Y., Dahan, Y., Yadav, S. et al. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening. Planta 244, 491–504 (2016). https://doi.org/10.1007/s00425-016-2522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2522-6

Keywords

Navigation