Advertisement

Planta

, Volume 244, Issue 2, pp 297–312 | Cite as

SPA proteins: SPAnning the gap between visible light and gene expression

  • Chiara Menon
  • David J. Sheerin
  • Andreas HiltbrunnerEmail author
Review

Abstract

Main conclusion

In this review we focus on the role of SPA proteins in light signalling and discuss different aspects, including molecular mechanisms, specificity, and evolution.

The ability of plants to perceive and respond to their environment is key to their survival under ever-changing conditions. The abiotic factor light is of particular importance for plants. Light provides plants energy for carbon fixation through photosynthesis, but also is a source of information for the adaptation of growth and development to the environment. Cryptochromes and phytochromes are major photoreceptors involved in control of developmental decisions in response to light cues, including seed germination, seedling de-etiolation, and induction of flowering. The SPA protein family acts in complex with the E3 ubiquitin ligase COP1 to target positive regulators of light responses for degradation by the 26S proteasome to suppress photomorphogenic development in darkness. Light-activated cryptochromes and phytochromes both repress the function of COP1, allowing accumulation of positive photomorphogenic factors in light. In this review, we highlight the role of the SPA proteins in this process and discuss recent advances in understanding how SPAs link light-activation of photoreceptors and downstream signaling.

Keywords

COP1 Cryptochrome Photomorphogenesis Phytochrome SPA proteins 

Notes

Acknowledgments

We thank Klaus Harter, Centre for Plant Molecular Biology (ZMBP), University of Tübingen, for hosting CM and the two anonymous reviewers for carefully reading the manuscripts and providing excellent feedback. Work in the laboratory of AH was supported by the Excellence Initiative of the German Federal and State Governments (EXC 294, project C20) and grants from the German Research Foundation (DFG; HI 1369/4-1 and HI 1369/5-1) and the Human Frontier Science Program (HFSP; RGP0025/2013) to AH.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

425_2016_2509_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1598 kb)

References

  1. Alabadí D, Gallego-Bartolomé J, Orlando L et al (2008) Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J 53:324–335. doi: 10.1111/j.1365-313X.2007.03346.x PubMedCrossRefGoogle Scholar
  2. Al-Sady B, Ni W, Kircher S et al (2006) Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell 23:439–446. doi: 10.1016/j.molcel.2006.06.011 PubMedCrossRefGoogle Scholar
  3. Balcerowicz M, Fittinghoff K, Wirthmueller L et al (2011) Light exposure of Arabidopsis seedlings causes rapid de-stabilization as well as selective post-translational inactivation of the repressor of photomorphogenesis SPA2. Plant J 65:712–723. doi: 10.1111/j.1365-313X.2010.04456.x PubMedCrossRefGoogle Scholar
  4. Bauer D, Viczián A, Kircher S et al (2004) CONSTITUTIVE PHOTOMORPHOGENESIS 1 and multiple photoreceptors control degradation of PHYTOCHROME INTERACTING FACTOR 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16:1433–1445. doi: 10.1105/tpc.021568 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baumgardt RL, Oliverio KA, Casal JJ, Hoecker U (2002) SPA1, a component of phytochrome A signal transduction, regulates the light signaling current. Planta 215:745–753. doi: 10.1007/s00425-002-0801-x PubMedCrossRefGoogle Scholar
  6. Boccalandro HE, Rossi MC, Saijo Y et al (2004) Promotion of photomorphogenesis by COP1. Plant Mol Biol 56:905–915. doi: 10.1007/s11103-004-5919-8 PubMedCrossRefGoogle Scholar
  7. Botto JF, Sanchez RA, Whitelam GC, Casal JJ (1996) Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiol 110:439–444. doi: 10.1104/pp.110.2.439 PubMedPubMedCentralGoogle Scholar
  8. Bou-Torrent J, Toledo-Ortiz G, Ortiz-Alcaide M et al (2015) Regulation of carotenoid biosynthesis by shade relies on specific subsets of antagonistic transcription factors and co-factors. Plant Physiol 169:1584–1594. doi: 10.1104/pp.15.00552 PubMedPubMedCentralGoogle Scholar
  9. Cao D, Lin Y, Cheng CL (2000) Genetic interactions between the chlorate-resistant mutant cr88 and the photomorphogenic mutants cop1 and hy5. Plant Cell 12:199–210. doi: 10.1105/tpc.12.2.199 PubMedPubMedCentralGoogle Scholar
  10. Casal JJ (2012) Shade avoidance. Arabidopsis Book 10:e0157. doi: 10.1199/tab.0157 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427. doi: 10.1146/annurev-arplant-050312-120221 PubMedCrossRefGoogle Scholar
  12. Casson S, Franklin KA, Gray JE et al (2009) Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol 19:229–234. doi: 10.1016/j.cub.2008.12.046 PubMedCrossRefGoogle Scholar
  13. Catalá R, Medina J, Salinas J (2011) Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc Natl Acad Sci USA 108:16475–16480. doi: 10.1073/pnas.1107161108 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chang C-SJ, Maloof JN, Wu S-H (2011) COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Plant Physiol 156:228–239. doi: 10.1104/pp.111.175042 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chaves I, Pokorny R, Byrdin M et al (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364. doi: 10.1146/annurev-arplant-042110-103759 PubMedCrossRefGoogle Scholar
  16. Chen H, Huang X, Gusmaroli G et al (2010) Arabidopsis CULLIN4-DAMAGED DNA BINDING PROTEIN 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell 22:108–123. doi: 10.1105/tpc.109.065490 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen A, Li C, Hu W et al (2014) PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci 111:10037–10044. doi: 10.1073/pnas.1409795111 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen S, Lory N, Stauber J, Hoecker U (2015) Photoreceptor specificity in the light-induced and COP1-mediated rapid degradation of the repressor of photomorphogenesis SPA2 in Arabidopsis. PLoS Genet 11:e1005516. doi: 10.1371/journal.pgen.1005516 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45. doi: 10.1146/annurev.arplant.58.032806.103951 PubMedCrossRefGoogle Scholar
  20. Christie JM, Arvai AS, Baxter KJ et al (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1497. doi: 10.1126/science.1218091 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Christie JM, Blackwood L, Petersen J, Sullivan S (2015) Plant flavoprotein photoreceptors. Plant Cell Physiol 56:401–413. doi: 10.1093/pcp/pcu196 PubMedCrossRefGoogle Scholar
  22. de Wit M, Lorrain S, Fankhauser C (2014) Auxin-mediated plant architectural changes in response to shade and high temperature. Physiol Plant 151:13–24. doi: 10.1111/ppl.12099 PubMedCrossRefGoogle Scholar
  23. Debrieux D, Trevisan M, Fankhauser C (2013) Conditional involvement of CONSTITUTIVE PHOTOMORPHOGENIC 1 in the degradation of phytochrome A. Plant Physiol 161:2136–2145. doi: 10.1104/pp.112.213280 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Deng XW, Caspar T, Quail PH (1991) COP1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5:1172–1182. doi: 10.1101/gad.5.7.1172 PubMedCrossRefGoogle Scholar
  25. Deng XW, Matsui M, Wei N et al (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71:791–801. doi: 10.1016/0092-8674(92)90555-Q PubMedCrossRefGoogle Scholar
  26. Dong J, Tang D, Gao Z et al (2014) Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating PHYTOCHROME INTERACTING FACTORs in the dark. Plant Cell. doi: 10.1105/tpc.114.130666 Google Scholar
  27. Duek PD, Elmer MV, van Oosten VR, Fankhauser C (2004) The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol 14:2296–2301. doi: 10.1016/j.cub.2004.12.026 PubMedCrossRefGoogle Scholar
  28. Fankhauser C, Christie JMM (2015) Plant phototropic growth. Curr Biol 25:R384–R389. doi: 10.1016/j.cub.2015.03.020 PubMedCrossRefGoogle Scholar
  29. Favory J-J, Stec A, Gruber H et al (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601. doi: 10.1038/emboj.2009.4 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fittinghoff K, Laubinger S, Nixdorf M et al (2006) Functional and expression analysis of Arabidopsis SPA genes during seedling photomorphogenesis and adult growth. Plant J 47:577–590. doi: 10.1111/j.1365-313X.2006.02812.x PubMedCrossRefGoogle Scholar
  31. Franklin KA, Davis SJ, Stoddart WM et al (2003a) Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell 15:1981–1989. doi: 10.1105/tpc.015164 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Franklin KA, Praekelt U, Stoddart WM et al (2003b) Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 131:1340–1346. doi: 10.1104/pp.102.015487 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Franklin KA, Lee SHH, Patel D et al (2011) PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235. doi: 10.1073/pnas.1110682108 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gangappa SN, Crocco CD, Johansson H et al (2013) The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell 25:1243–1257. doi: 10.1105/tpc.113.109751 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hardtke CS, Gohda K, Osterlund MT et al (2000) HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J 19:4997–5006. doi: 10.1093/emboj/19.18.4997 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Heijde M, Binkert M, Yin R et al (2013) Constitutively active UVR8 photoreceptor variant in Arabidopsis. Proc Natl Acad Sci USA 110:20326–20331. doi: 10.1073/pnas.1314336110 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hennig L, Stoddart WM, Dieterle M et al (2002) Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol 128:194–200. doi: 10.1104/pp.010559 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hoecker U, Quail PH (2001) The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J Biol Chem 276:38173–38178. doi: 10.1074/jbc.M103140200 PubMedGoogle Scholar
  39. Hoecker U, Xu Y, Quail PH (1998) SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10:19–33. doi: 10.1105/tpc.10.1.19 PubMedPubMedCentralGoogle Scholar
  40. Hoecker U, Tepperman JM, Quail PH (1999) SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284:496–499. doi: 10.1126/science.284.5413.496 PubMedCrossRefGoogle Scholar
  41. Holm M, Ma L-G, Qu L-J, Deng X-W (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16:1247–1259. doi: 10.1101/gad.969702 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hornitschek P, Lorrain S, Zoete V et al (2009) Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J 28:3893–3902. doi: 10.1038/emboj.2009.306 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hornitschek P, Kohnen MV, Lorrain S et al (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71:699–711. doi: 10.1111/j.1365-313X.2012.05033.x PubMedCrossRefGoogle Scholar
  44. Hotton SK, Callis J (2008) Regulation of cullin RING ligases. Annu Rev Plant Biol 59:467–489. doi: 10.1146/annurev.arplant.58.032806.104011 PubMedCrossRefGoogle Scholar
  45. Huang X, Ouyang X, Yang P et al (2013) Conversion from CUL4-based COP1–SPA E3 apparatus to UVR8–COP1–SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proc Natl Acad Sci 110:16669–16674. doi: 10.1073/pnas.1316622110 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Huang X, Ouyang X, Deng XW (2014) Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr Opin Plant Biol 21:96–103. doi: 10.1016/j.pbi.2014.07.003 PubMedCrossRefGoogle Scholar
  47. Indorf M, Cordero J, Neuhaus G, Rodríguez-Franco M (2007) SALT TOLERANCE (STO), a stress-related protein, has a major role in light signalling. Plant J 51:563–574. doi: 10.1111/j.1365-313X.2007.03162.x PubMedCrossRefGoogle Scholar
  48. Ishikawa M, Kiba T, Chua NH (2006) The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering. Plant J 46:736–746. doi: 10.1111/j.1365-313X.2006.02737.x PubMedCrossRefGoogle Scholar
  49. Ito S, Song YH, Imaizumi T (2012) LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol Plant 5:573–582. doi: 10.1093/mp/sss013 PubMedCrossRefGoogle Scholar
  50. Jang I-C, Yang J-Y, Seo HS, Chua N-H (2005) HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev 19:593–602. doi: 10.1101/gad.1247205 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jang S, Marchal V, Panigrahi KCS et al (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277–1288. doi: 10.1038/emboj.2008.68 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jang I-C, Henriques R, Seo HS et al (2010) Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell 22:2370–2383. doi: 10.1105/tpc.109.072520 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jang K, Gil Lee H, Jung S-J et al (2015) The E3 ubiquitin ligase COP1 regulates thermosensory flowering by triggering GI degradation in Arabidopsis. Sci Rep 5:12071. doi: 10.1038/srep12071 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jenkins GI (2014) The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26:21–37. doi: 10.1105/tpc.113.119446 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jiao Y, Ma L, Strickland E, Deng XW (2005) Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. Plant Cell 17:3239–3256. doi: 10.1105/tpc.105.035840 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Johnson E, Bradley M, Harberd NP, Whitelam GC (1994) Photoresponses of light-grown phyA mutants of Arabidopsis: phytochrome A is required for the perception of daylength extensions. Plant Physiol 105:141–149. doi: 10.1104/pp.105.1.141 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kaiserli E, Jenkins GI (2007) UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19:2662–2673. doi: 10.1105/tpc.107.053330 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66. doi: 10.1016/S0070-2153(10)91002-8 PubMedCrossRefGoogle Scholar
  59. Klose C, Viczián A, Kircher S et al (2015) Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. New Phytol 206:965–971. doi: 10.1111/nph.13207 PubMedCrossRefGoogle Scholar
  60. Koini MA, Alvey L, Allen T et al (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413. doi: 10.1016/j.cub.2009.01.046 PubMedCrossRefGoogle Scholar
  61. Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577. doi: 10.1016/j.pbi.2010.07.001 PubMedCrossRefGoogle Scholar
  62. Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–593. doi: 10.1016/j.tplants.2012.05.004 PubMedCrossRefGoogle Scholar
  63. Laubinger S, Hoecker U (2003) The SPA1-like proteins SPA3 and SPA4 repress photomorphogenesis in the light. Plant J 35:373–385. doi: 10.1046/j.1365-313X.2003.01813.x PubMedCrossRefGoogle Scholar
  64. Laubinger S, Fittinghoff K, Hoecker U (2004) The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16:2293–2306. doi: 10.1105/tpc.104.024216 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Laubinger S, Marchal V, Le Gourrierec J et al (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133:3213–3222. doi: 10.1242/dev.02481 PubMedCrossRefGoogle Scholar
  66. Leivar P, Monte E (2014) PIFs: systems integrators in plant development. Plant Cell 26:56–78. doi: 10.1105/tpc.113.120857 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28. doi: 10.1016/j.tplants.2010.08.003 PubMedCrossRefGoogle Scholar
  68. Leivar P, Monte E, Oka Y et al (2008) Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol 18:1815–1823. doi: 10.1016/j.cub.2008.10.058 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Leivar P, Tepperman JM, Monte E et al (2009) Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21:3535–3553. doi: 10.1105/tpc.109.070672 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Leivar P, Monte E, Cohn MM, Quail PH (2012) Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop. Mol Plant 5:734–749. doi: 10.1093/mp/sss031 PubMedCrossRefGoogle Scholar
  71. Li J, Li G, Wang H, Wang Deng X (2011) Phytochrome signaling mechanisms. Arabidopsis Book 9:e0148. doi: 10.1199/tab.0148 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Li L, Ljung K, Breton G et al (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–790. doi: 10.1101/gad.187849.112 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li F, Sun J, Wang D et al (2014) The B-box family gene STO (BBX24) in Arabidopsis thaliana regulates flowering time in different pathways. PLoS One 9:e87544. doi: 10.1371/journal.pone.0087544 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lian H-L, He S-B, Zhang Y-C et al (2011) Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev 25:1023–1028. doi: 10.1101/gad.2025111 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lin C, Yang H, Guo H et al (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA 95:2686–2690. doi: 10.1073/pnas.95.5.2686 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Liu H, Yu X, Li K et al (2008a) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322:1535–1539. doi: 10.1126/science.1163927 PubMedCrossRefGoogle Scholar
  77. Liu L-J, Zhang Y-C, Li Q-H et al (2008b) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20:292–306. doi: 10.1105/tpc.107.057281 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liu B, Zuo Z, Liu H et al (2011a) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25:1029–1034. doi: 10.1101/gad.2025011 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liu H, Liu B, Zhao C et al (2011b) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691. doi: 10.1016/j.tplants.2011.09.002 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Liu Y, Li X, Li K et al (2013) Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genet 9:e1003861. doi: 10.1371/journal.pgen.1003861 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lorrain S, Trevisan M, Pradervand S, Fankhauser C (2009) PHYTOCHROME INTERACTING FACTORs 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light. Plant J 60:449–461. doi: 10.1111/j.1365-313X.2009.03971.x PubMedCrossRefGoogle Scholar
  82. Lu X-D, Zhou C-M, Xu P-B et al (2015) Red-light-dependent interaction of phyB with SPA1 promotes COP1–SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol Plant 8:467–478. doi: 10.1016/j.molp.2014.11.025 PubMedCrossRefGoogle Scholar
  83. Luo X-M, Lin W-H, Zhu S et al (2010) Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Dev Cell 19:872–883. doi: 10.1016/j.devcel.2010.10.023 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ma L, Li J, Qu L et al (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607. doi: 10.1105/tpc.010229 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ma L, Gao Y, Qu L et al (2002) Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell 14:2383–2398. doi: 10.1105/tpc.004416 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Maier A, Schrader A, Kokkelink L et al (2013) Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74:638–651. doi: 10.1111/tpj.12153 PubMedCrossRefGoogle Scholar
  87. Mancinelli AL (1994) The physiology of phytochrome action. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 211–269CrossRefGoogle Scholar
  88. Mathews S (2006) Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol 15:3483–3503. doi: 10.1111/j.1365-294X.2006.03051.x PubMedCrossRefGoogle Scholar
  89. McNellis TW, von Arnim AG, Araki T et al (1994) Genetic and molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains. Plant Cell 6:487–500. doi: 10.1105/tpc.6.4.487 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Monte E, Alonso JM, Ecker JR et al (2003) Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell 15:1962–1980. doi: 10.1105/tpc.012971 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657–667PubMedCrossRefGoogle Scholar
  92. Ni W, Xu S-L, Tepperman JM et al (2014) A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344:1160–1164. doi: 10.1126/science.1250778 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nishida H, Ishihara D, Ishii M et al (2013) Phytochrome C is a key factor controlling long-day flowering in barley. Plant Physiol 163:804–814. doi: 10.1104/pp.113.222570 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Oh E, Kim J, Park E et al (2004) PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16:3045–3058. doi: 10.1105/tpc.104.025163.1 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Oh E, Yamaguchi S, Kamiya Y et al (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139. doi: 10.1111/j.1365-313X.2006.02773.x PubMedCrossRefGoogle Scholar
  96. Oravecz A, Baumann A, Máté Z et al (2006) CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18:1975–1990. doi: 10.1105/tpc.105.040097 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ordoñez-Herrera N, Fackendahl P, Yu X et al (2015) A cop1 spa mutant deficient in COP1 and SPA proteins reveals partial co-action of COP1 and SPA during Arabidopsis post-embryonic development and photomorphogenesis. Mol Plant 8:479–481. doi: 10.1016/j.molp.2014.11.026 PubMedCrossRefGoogle Scholar
  98. Osterlund MT, Deng X-W (1998) Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J 16:201–208. doi: 10.1046/j.1365-313X.1998.00290.x PubMedCrossRefGoogle Scholar
  99. Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466. doi: 10.1038/35013076 PubMedCrossRefGoogle Scholar
  100. Pacín M, Legris M, Casal JJ (2013) COP1 re-accumulates in the nucleus under shade. Plant J 75:631–641. doi: 10.1111/tpj.12226 PubMedCrossRefGoogle Scholar
  101. Pacín M, Legris M, Casal JJ (2014) Rapid decline in nuclear COP1 abundance anticipates the stabilisation of its target HY5 in the light. Plant Physiol 164:1134–1138. doi: 10.1104/pp.113.234245 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Park E, Park J, Kim J et al (2012) Phytochrome B inhibits binding of PHYTOCHROME INTERACTING FACTORs to their target promoters. Plant J 72:537–546. doi: 10.1111/j.1365-313X.2012.05114.x PubMedPubMedCentralCrossRefGoogle Scholar
  103. Peschke F, Kretsch T (2011) Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation. Plant Physiol 155:1353–1366. doi: 10.1104/pp.110.166801 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ranjan A, Dickopf S, Ullrich KK et al (2014) Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation. BMC Plant Biol 14:178. doi: 10.1186/1471-2229-14-178 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Rausenberger J, Tscheuschler A, Nordmeier W et al (2011) Photoconversion and nuclear trafficking cycles determine phytochrome A’s response profile to far-red light. Cell 146:813–825. doi: 10.1016/j.cell.2011.07.023 PubMedCrossRefGoogle Scholar
  106. Richardt S, Lang D, Reski R et al (2007) PlanTAPDB, a phylogeny-based resource of plant transcription-associated proteins. Plant Physiol 143:1452–1466. doi: 10.1104/pp.107.095760 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Rizzini L, Favory J-J, Cloix C et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106. doi: 10.1126/science.1200660 PubMedCrossRefGoogle Scholar
  108. Rolauffs S, Fackendahl P, Sahm J et al (2012) Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio. Plant Physiol 160:2015–2027. doi: 10.1104/pp.112.207233 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Saijo Y, Sullivan JA, Wang H et al (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17:2642–2647. doi: 10.1101/gad.1122903 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sellaro R, Crepy M, Trupkin SA et al (2010) Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiol 154:401–409. doi: 10.1104/pp.110.160820 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Seo HS, Yang J-Y, Ishikawa M et al (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423:995–999. doi: 10.1038/nature01696 PubMedCrossRefGoogle Scholar
  112. Seo HS, Watanabe E, Tokutomi S et al (2004) Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev 18:617–622. doi: 10.1101/gad.1187804 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Shalitin D, Yang H, Mockler TC et al (2002) Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417:763–767. doi: 10.1038/nature00815 PubMedCrossRefGoogle Scholar
  114. Sharrock RA, Clack T (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol 130:442–456. doi: 10.1104/pp.005389 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sheerin DJ, Menon C, zur Oven-Krockhaus S et al (2015) Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27:189–201. doi: 10.1105/tpc.114.134775 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Shen H, Moon J, Huq E (2005) PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. Plant J 44:1023–1035. doi: 10.1111/j.1365-313X.2005.02606.x PubMedCrossRefGoogle Scholar
  117. Shi H, Zhong S, Mo X et al (2013) HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis. Plant Cell 25:3770–3784. doi: 10.1105/tpc.113.117424 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Shimizu M, Ichikawa K, Aoki S (2004) Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens. Biochem Biophys Res Commun 324:1296–1301. doi: 10.1016/j.bbrc.2004.09.194 PubMedCrossRefGoogle Scholar
  119. Shin J, Kim K, Kang H et al (2009) Phytochromes promote seedling light responses by inhibiting four negatively-acting PHYTOCHROME INTERACTING FACTORs. Proc Natl Acad Sci USA 106:7660–7665. doi: 10.1073/pnas.0812219106 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Smirnova OG, Stepanenko IL, Shumnyi VK (2011) The role of the COP1, SPA, and PIF proteins in plant photomorphogenesis. Biol Bull Rev 1:314–324. doi: 10.1134/S2079086411040098 CrossRefGoogle Scholar
  121. Smirnova OG, Stepanenko IL, Shumny VK (2012) Mechanism of action and activity regulation of COP1, a constitutive repressor of photomorphogenesis. Russ J Plant Physiol 59:155–166. doi: 10.1134/S102144371202015X CrossRefGoogle Scholar
  122. Smith H, Xu Y, Quail PH (1997) Antagonistic but complementary actions of phytochromes A and B allow seedling de-etiolation. Plant Physiol 114:637–641. doi: 10.1104/pp.114.2.637 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sun J, Qi L, Li Y et al (2012) PIF4–mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8:e1002594. doi: 10.1371/journal.pgen.1002594 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Takemiya A, Inoue S-I, Doi M et al (2005) Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17:1120–1127. doi: 10.1105/tpc.104.030049 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tilbrook K, Arongaus AB, Binkert M et al (2013) The UVR8 UV-B photoreceptor: perception, signaling and response. Arabidopsis Book 11:e0164. doi: 10.1199/tab.0164 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Vandenbussche F, Habricot Y, Condiff AS et al (2007) HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J 49:428–441. doi: 10.1111/j.1365-313X.2006.02973.x PubMedCrossRefGoogle Scholar
  127. Viczián A, Ádám É, Wolf I et al (2012) A short amino-terminal part of Arabidopsis phytochrome A induces constitutive photomorphogenic response. Mol Plant 5:629–641. doi: 10.1093/mp/sss035 PubMedCrossRefGoogle Scholar
  128. von Arnim AG, Deng X-W (1994) Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79:1035–1045. doi: 10.1016/0092-8674(94)90034-5 CrossRefGoogle Scholar
  129. von Arnim AG, Osterlund MT, Kwok SF, Deng XW (1997) Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. Plant Physiol 114:779–788. doi: 10.1104/pp.114.3.779 CrossRefGoogle Scholar
  130. Wang H, Wang H (2015) Phytochrome signaling: time to tighten up the loose ends. Mol Plant 8:540–551. doi: 10.1016/j.molp.2014.11.021 PubMedCrossRefGoogle Scholar
  131. Weidler G, Zur Oven-Krockhaus S, Heunemann M et al (2012) Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A. Plant Cell 24:2610–2623. doi: 10.1105/tpc.112.098210 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Whitelam GC, Johnson E, Peng J et al (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5:757–768. doi: 10.1105/tpc.5.7.757 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wu D, Hu Q, Yan Z et al (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–219. doi: 10.1038/nature10931 PubMedCrossRefGoogle Scholar
  134. Xu X, Paik I, Zhu L et al (2014) PHYTOCHROME INTERACTING FACTOR1 enhances the E3 ligase activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to synergistically repress photomorphogenesis in Arabidopsis. Plant Cell 26:1992–2006. doi: 10.1105/tpc.114.125591 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Yamawaki S, Yamashino T, Nakanishi H, Mizuno T (2011) Functional characterization of HY5 homolog genes involved in early light-signaling in Physcomitrella patens. Biosci Biotechnol Biochem 75:1533–1539. doi: 10.1271/bbb.110219 PubMedCrossRefGoogle Scholar
  136. Yang J, Wang H (2006) The central coiled-coil domain and carboxyl-terminal WD-repeat domain of Arabidopsis SPA1 are responsible for mediating repression of light signaling. Plant J 47:564–576. doi: 10.1111/j.1365-313X.2006.02811.x PubMedCrossRefGoogle Scholar
  137. Yang J, Lin R, Hoecker U et al (2005a) Repression of light signaling by Arabidopsis SPA1 involves post-translational regulation of HFR1 protein accumulation. Plant J 43:131–141. doi: 10.1111/j.1365-313X.2005.02433.x PubMedCrossRefGoogle Scholar
  138. Yang J, Lin R, Sullivan J et al (2005b) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17:804–821. doi: 10.1105/tpc.104.030205 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yanovsky MJ, Casal JJ, Whitelam GC (1995) Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth-responses to natural radiation in Arabidopsis: weak de-etiolation of the phyA mutant under dense canopies. Plant Cell Environ 18:788–794. doi: 10.1111/j.1365-3040.1995.tb00582.x CrossRefGoogle Scholar
  140. Yu J-WW, Rubio V, Lee N-YY et al (2008) COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell 32:617–630. doi: 10.1016/j.molcel.2008.09.026 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zeng X, Ren Z, Wu Q et al (2015) Dynamic crystallography reveals early signalling events in ultraviolet photoreceptor UVR8. Nat Plants 1:14006. doi: 10.1038/nplants.2014.6 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zheng X, Wu S, Zhai H et al (2013) Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light. Plant Cell 25:115–133. doi: 10.1105/tpc.112.107086 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zhu D, Maier A, Lee J-H et al (2008) Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 20:2307–2323. doi: 10.1105/tpc.107.056580 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zhu L, Bu Q, Xu X et al (2015) CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nat Commun 6:7245. doi: 10.1038/ncomms8245 PubMedCrossRefGoogle Scholar
  145. Zobell O, Coupland G, Reiss B (2005) The family of CONSTANS-like genes in Physcomitrella patens. Plant Biol (Stuttg) 7:266–275. doi: 10.1055/s-2005-865621 CrossRefGoogle Scholar
  146. Zuo Z, Liu H, Liu B et al (2011) Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 21:841–847. doi: 10.1016/j.cub.2011.03.048 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chiara Menon
    • 1
    • 2
  • David J. Sheerin
    • 1
  • Andreas Hiltbrunner
    • 1
    • 3
    Email author
  1. 1.Faculty of Biology, Institute of Biology IIUniversity of FreiburgFreiburgGermany
  2. 2.Center for Plant Molecular BiologyUniversity of TübingenTübingenGermany
  3. 3.BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany

Personalised recommendations