Planta

, Volume 244, Issue 2, pp 347–359 | Cite as

Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray

  • Fabiano Sillo
  • Jonatan U. Fangel
  • Bernard Henrissat
  • Antonella Faccio
  • Paola Bonfante
  • Francis Martin
  • William G. T. Willats
  • Raffaella Balestrini
Original Article

Abstract

Main conclusion

A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling duringTuber melanosporumandCorylus avellanainteraction.

Cell walls are involved, to a great extent, in mediating plant–microbe interactions. An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes in fully developed C. avellana/T. melanosporum ectomycorrhizae. A localized degradation of pectin seems to occur during fungal colonization, in agreement with the growth of the ectomycorrhizal fungus through the middle lamella and with the fungal gene expression of genes acting on these polysaccharides.

Keywords

Carbohydrate-Active enZYmes CoMPP Ectomycorrhiza Hazel Plant cell wall Tuber 

Abbreviations

CBM

Carbohydrate-binding module

COMPP

Comprehensive microarray polymer profiling

GH

Glycoside hydrolase

HG

Homogalacturonan

PCWDEs

Plant cell-wall degrading enzymes

Supplementary material

425_2016_2507_MOESM1_ESM.jpg (52 kb)
Supplementary material 1 Fig. S1aCorylus avellana/Tuber melanosporum ectomycorrhizae with the typical clavate aspect. b Longitudinal semi-thin section of a C. avellana/T. melanosporum ectomycorrhiza showing the mantle (m) which consists of several layers of hyphae, and the Hartig net proliferation (arrows). As suggested from a quantification based on an RNA proportion (Tisserant et al. 2011), at this stage of development, fungal mycelium represents about 30 % of the ectomycorrhizal tissues. Scale bar 25 μm
425_2016_2507_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 kb)

References

  1. Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739CrossRefPubMedGoogle Scholar
  2. Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12:186. doi:10.1186/1471-2148-12-186 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balestrini R, Hahn MG, Bonfante P (1996) Location of cell-wall components in ectomycorrhizae of Corylus avellana and Tuber magnatum. Protoplasma 191:55–69. doi:10.1007/BF01280825 CrossRefGoogle Scholar
  4. Balestrini R, Sillo F, Kohler A, Schneider G, Faccio A, Tisserant E et al (2012) Genome-wide analysis of cell wall-related genes in Tuber melanosporum. Curr Genet 58:165–177CrossRefPubMedGoogle Scholar
  5. Balestrini R, Bonfante P (2014) Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Front Plant Sci 5:237. doi:10.3389/fpls.2014.00237 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F, Ferrari S, Ausubel FM, Cervone F, De Lorenzo G (2015) Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci USA 112:5533–5538CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cao W, Crawford DL (1993) Carbon nutrition and hydrolytic and cellololytic activities in the ectomycorrhizal fungus Pisolithus tinctorius. Can J Microbiol 39:529–535CrossRefGoogle Scholar
  8. Chang S, Pur Year J, Carney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116CrossRefGoogle Scholar
  9. Colpaert JV, Van Laere A (1996) A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonising beech litter. New Phytol 134:133–141CrossRefGoogle Scholar
  10. Damásio ARL, Rubio MV, Oliveira LC, Segato F, Dias BA, Citadini AP, Paixão DA, Squina FM (2014) Understanding the function of conserved variations in the catalytic loops of fungal glycoside hydrolase family 12. Biotech Bioeng 111:1494–1505. doi:10.1002/bit.25209 CrossRefGoogle Scholar
  11. Duplessis S, Cuomo CA, Linc Y-C, Aertsd A, Tisserant E, Veneault-Fourrey C, Jolye DL, Hacquard S (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA 108:9166–9171. doi:10.1073/pnas.1019315108 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fangel JU, Ulvskov P, Knox JP, Mikkelsen MD, Harholt J, Popper ZA, Willats WGT (2012) Cell wall evolution and diversity. Front Plant Sci 3:152. doi:10.3389/fpls.2012.00152 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, De Lorenzo G (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 4:49. doi:10.3389/fpls.2013.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hacquard S, Tisserant E, Brun A, Legué V, Martin F, Kohler A (2013) Laser microdissection and microarray analysis of Tuber melanosporum ectomycorrhizas reveal functional heterogeneity between mantle and Hartig net compartments. Environ Microbiol 15:1853–1869. doi:10.1111/1462-2920.12080 CrossRefPubMedGoogle Scholar
  15. Hansen MAT, Ahl LI, Pedersen HL, Westereng B, Willats WGT, Jørgensen H, Felby C (2014) Extractability and digestibility of plant cell wall polysaccharides during hydrothermal and enzymatic degradation of wheat straw (Triticum aestivum L.). Ind Crop Prod 55:63–69CrossRefGoogle Scholar
  16. Johnsen HR, Striberny B, Olsen S, Vidal-Melgosa S, Fangel JU, Willats WGT, Rose JKC, Krause K (2015) Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes. New Phytol 207:805–816. doi:10.1111/nph.13378 CrossRefPubMedGoogle Scholar
  17. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction. Method J Mol Biol 338:1027–1036CrossRefPubMedGoogle Scholar
  18. Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181:512–521CrossRefPubMedGoogle Scholar
  19. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415CrossRefPubMedGoogle Scholar
  20. Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52:427–451. doi:10.1146/annurev-phyto-102313-045831 CrossRefPubMedGoogle Scholar
  21. Kusuda M, Ueda M, Mihatake K, Terashita T (2008) Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience 49:291–297CrossRefGoogle Scholar
  22. Le Tacon F, Zeller B, Plain C, Hossann C, Bréchet C, Martin F, Kohler A, Villerd J, Robin C (2015) Study of nitrogen and carbon transfer from soil organic matter to Tuber melanosporum mycorrhizas and ascocarps using 15N and 13C soil labelling and whole-genome oligoarrays. Plant Soil 395:351–373CrossRefGoogle Scholar
  23. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotech Biofuels 6:41. doi:10.1186/1754-6834-6-41 CrossRefGoogle Scholar
  24. Lionetti V, Francoccia F, Ferrari S, Volpi C, Bellincampi D, Galletti R, D’Ovidio R, De Lorenzo G, Cervone F (2009) Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci USA 107:616–621CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. Section 22.5: The dynamic plant cell wall. WH Freeman, New York. http://www.ncbi.nlm.nih.gov/books/NBK21709/
  26. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2013) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. doi:10.1093/nar/gkt1178 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161CrossRefPubMedGoogle Scholar
  28. Maijala P, Fagerstedt KV, Raudaskoski M (1991) Detection of extracellular cellololytic and proteolytic activity in ectomycorrhizal fungi and Heterobasidion annosum (Fr) Bref. New Phytol 117:643–648CrossRefGoogle Scholar
  29. Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F et al (2008) Symbiosis insights from the genome of the mycorrhizal basidiomycete Laccaria bicolor. Nature 452:88–92. doi:10.1038/nature06556 CrossRefPubMedGoogle Scholar
  30. Martin F, Selosse M-A (2008) The Laccaria genome: a symbiont blueprint decoded. New Phytol 180:296–310. doi:10.1111/j.1469-8137.2008.02613.x CrossRefPubMedGoogle Scholar
  31. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:10331038. doi:10.1038/nature08867 Google Scholar
  32. Moller IE, Sørensen I, Bernal Giraldo AJ, Blaukopf C, Lee K, Øbro J, Pettolino F, Roberts A, Mikkelsen JD, Knox JP, Bacic A, Willats WGT (2007) High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J 50:1118–1128CrossRefPubMedGoogle Scholar
  33. Moller I, Marcus SE, Haeger A, Verhertbruggen Y, Verhoef R, Schols H, Ulvskov P, Mikkelsen JD, Knox JP, Willats W (2008) High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray profiles. Glycoconj J 25:37–48CrossRefPubMedGoogle Scholar
  34. Moller IE, De Fine Licht HH, Harholt J, Willats WGT, Boomsma JJ (2011) The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens. PLoS One 6:e17506. doi:10.1371/journal.pone.0017506 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Montanini B, Levati E, Bolchi A, Kohler A, Morin E, Tisserant E, Martin F, Ottonello S (2011) Genome-wide search and functional identification of transcription factors in the mycorrhizal fungus Tuber melanosporum. New Phytol 189:736–750. doi:10.1111/j.1469-8137.2010.03525.x CrossRefPubMedGoogle Scholar
  36. Nagendran S, Hallen-Adams HE, Paper JM, Aslama N, Walton JD (2009) Reduced genomic potential for secreted plant cell-wall degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet Biol 46:427–435. doi:10.1016/j.fgb.2009.02.001 CrossRefPubMedGoogle Scholar
  37. Pedersen HL, Fangel JU, McCleary B, Ruzanski C, GroRydahl MG, Ralet M-C, Farkas V, Schantz L, Marcus SE, Andersen MCF, Field R, Ohlin M, Knox JP, Clausen MH, Willats WGT (2012) Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research. J Biol Chem 287:39429–39438CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in Real-Time PCR. Nucleic Acids Res 30:E36CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sénéchal F, Wattier C, Rustérucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot 65:5125–5160. doi:10.1093/jxb/eru272 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sillo F, Gissi C, Chignoli D, Ragni E, Popolo L, Balestrini R (2013) Expression and phylogenetic analyses of the Gel/Gas proteins of Tuber melanosporum provide insights into the function and evolution of glucan remodeling enzymes in fungi. Fungal Gen Biol 53:10–21CrossRefGoogle Scholar
  41. Sillo F, Zampieri E, Giordano L, Lione G, Colpaert JV, Balestrini R, Gonthier P (2015) Identification of genes differentially expressed during the interaction between the plant symbiont Suillus luteus and two plant pathogenic allopatric Heterobasidion species. Mycol Progress 14:106CrossRefGoogle Scholar
  42. Sørensen I, Willats WG (2011) Screening and characterization of plant cell walls using carbohydrate microarrays. Methods Mol Biol 715:115–121. doi:10.1007/978-1-61779-008-9_8 CrossRefPubMedGoogle Scholar
  43. Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel 19:555–562CrossRefPubMedGoogle Scholar
  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Biol Evol 30:2725–2729CrossRefGoogle Scholar
  45. Tisserant E, Da Silva C, Kohler A, Morin E, Wincker P, Martin F (2011) Deep RNA sequencing improved the structural annotation of the Tuber melanosporum transcriptome. New Phytol 189:883–891CrossRefPubMedGoogle Scholar
  46. Veneault-Fourrey C, Commun C, Kohler A, Morin E, Balestrini R, Plett J, Danchin E, Coutinho P, Wiebenga A, de Vries RP, Henrissat B, Martin F (2014) Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Biol Gen 72:168–181CrossRefGoogle Scholar
  47. Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr Res 344:1858–1862CrossRefPubMedGoogle Scholar
  48. Willats WGT, Knox JP, Mikkelsen JD (2006) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Tech 17:97–104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fabiano Sillo
    • 1
    • 9
  • Jonatan U. Fangel
    • 2
  • Bernard Henrissat
    • 3
    • 4
    • 5
    • 6
  • Antonella Faccio
    • 7
  • Paola Bonfante
    • 1
  • Francis Martin
    • 8
  • William G. T. Willats
    • 2
  • Raffaella Balestrini
    • 7
  1. 1.Dipartimento di Scienze Della Vita e Biologia dei SistemiUniversità di TorinoTorinoItaly
  2. 2.Section for Plant Glycobiology, Department of Plant and Environmental SciencesCopenhagen UniversityCopenhagenDenmark
  3. 3.Centre National de la Recherche Scientifique, UMR 7257MarseilleFrance
  4. 4.Architecture et Fonction des Macromolécules BiologiquesAix-Marseille UniversityMarseilleFrance
  5. 5.INRA, USC 1408 AFMBMarseilleFrance
  6. 6.Department of Biological SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  7. 7.Istituto per la Protezione Sostenibile delle Piante (IPSP) del CNR, Torino UnitTorinoItaly
  8. 8.Laboratoire d’excellence ARBRE, Institut National de la Recherche Agronomique (INRA)UMR 1136 Interactions Arbres/Microorganismes, INRA-NancyChampenouxFrance
  9. 9.Dipartimento di Scienze Agrarie, Forestali e AlimentariUniversità di TorinoTurinItaly

Personalised recommendations