Skip to main content

Advertisement

Log in

Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Fructan accumulation and remobilization to grains under salinity can decrease dependency of the wheat tolerant cultivar on current photosynthesis and protect it from severe yield loss under salt stress.

Tolerance of plants to abiotic stresses can be enhanced by accumulation of soluble sugars, such as fructan. The current research sheds light on the role of stem fructan remobilization on yield of bread wheat under salt stress conditions. Fructan accumulation and remobilization as well as relative expression of the major genes of fructan metabolism were investigated in the penultimate internodes of ‘Bam’ as the salt-tolerant and ‘Ghods’ as the salt-sensitive wheat cultivars under salt-stressed and controlled conditions and their correlations were analyzed. More fructan production and higher efficiency of fructan remobilization was detected in Bam cultivar under salinity. Up-regulation of sucrose: sucrose 1-fructosyltransferase (1-SST) and sucrose: fructan 6-fructosyltransferase (6-SFT) (fructan biosynthesis genes) at anthesis and up-regulation of fructan exohydrolase (1-FEH) and vacuolar invertase (IVR) genes (contributed to fructan metabolism) during grain filling stage and higher expression of sucrose transporter gene (SUT1) in Bam was in accordance with its induced fructan accumulation and remobilization under salt stress. A significant correlation was observed between weight density, WSCs and gene expression changes under salt stress. Based on the these results, increased fructan production and induced stem reserves remobilization under salinity can decrease dependency of the wheat tolerant cultivar on current photosynthesis and protect it from severe yield loss under salt stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DPA:

Day post anthesis

FEH:

Fructan exohydrolase

IVR:

Vacuolar invertase

OA:

Osmotic adjustment

6-SFT:

Sucrose: fructan 6-fructosyltransferase

1-SST:

Sucrose: sucrose 1-fructosyltransferase

SUT:

Sucrose transporter

WSCs:

Water soluble carbohydrates

References

  • Bazargani MM, Sarhadi E, Bushehri AAS, Matros A, Mock HP, Naghavi MR, Hajihoseini V, Mardi M, Hajirezaei M, Moradi F (2011) A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J Proteomics 74:1959–1973

    Article  CAS  PubMed  Google Scholar 

  • Bie X, Wang K, She M, Du L, Zhang S, Li J, Gao X, Lin Z, Ye X (2012) Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. Plant Cell Rep 31:2229–2238

    Article  CAS  PubMed  Google Scholar 

  • Blum A (1989) Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci 29:230–233

    Article  Google Scholar 

  • Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100:77–83

    Article  Google Scholar 

  • Cairns AJ (2003) Fructan biosynthesis in transgenic plants. J Exp Bot 54:549–567

    Article  CAS  PubMed  Google Scholar 

  • Ehdaie B, Alloush GA, Madore MA, Waines JG (2006a) Genotypic variation for stem reserves and mobilization in wheat: I. Postanthesis changes in internode dry matter. Crop Sci 46:735–746. doi:10.2135/cropsci2005.04-0033

    Article  Google Scholar 

  • Ehdaie B, Alloush GA, Madore MA, Waines JG (2006b) Genotypic variation for stem reserves and mobilization in wheat: II. Postanthesis changes in internode water-soluble carbohydrates. Crop Sci 46:2093–2103

    Article  CAS  Google Scholar 

  • Farouk S (2011) Osmotic adjustment in wheat flag leaf in relation to flag leaf area and grain yield per plant. J Stress Physiol Biochem 7:117–138

    Google Scholar 

  • Gebbing T, Schnyder S (1999) Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol 121:871–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godt DE, Roitsch T (1997) Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggest an important function in establishing and maintaining sink metabolism. Plant Physiol 115:273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goggin DE, Setter TL (2004) Fructosyltransferase activity and fructan accumulation during development in wheat exposed to terminal drought. Funct Plant Biol 31:11–21

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463

    Article  CAS  PubMed  Google Scholar 

  • Hincha DK, Popova AV, Cacela C (2006) Effects of sugars on the stability of lipid membranes during drying. In: Leitmannova Liu A (ed) Advances in planar lipid bilayers and liposomes, vol 3. Elsevier, Amsterdam, pp 189–217

    Google Scholar 

  • Huynh BL, Mather DE, Schreiber AW, Toubia J, Baumann U, Shoaei Z, Stein N, Ariyadasa R, Stangoulis JC, Edwards J, Shirley N, Langridge P, Fleury D (2012) Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. Plant Mol Biol 80:299–314

    Article  CAS  PubMed  Google Scholar 

  • Joudi M, Ahmadi A, Mohamadi V, Abbasi A, Vergauwen R, Mohammadi H, Van den Ende W (2012) Comparison of fructan dynamics in two wheat cultivars with different capacities of accumulation and remobilization under drought stress. Physiol Plant 144:1–12. doi:10.1111/j.1399-3054.2011.01517.x

    Article  CAS  PubMed  Google Scholar 

  • Kawakami A, Yoshida M (2002) Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Biosci Biotech Biochem 66:2297–2305

    Article  CAS  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Lalonde S, Tegeder M, Throne-Holst M, Frommer WB, Patrick JW (2003) Phloem loading and unloading of sugars and amino acids. Plant Cell Environ 26:37–56

    Article  CAS  Google Scholar 

  • Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Huang GB, Yang DL, Chai Q (2014) Dry matter remobilization and compensatory effects in various internodes of spring wheat under water stress. Crop Sci 54(1):331–339

    Article  Google Scholar 

  • Maas EV, Lesch SM, Francois LE, Grieve CM (1996) Contribution of individual culms to yield of salt-stressed wheat. Crop Sci 36:142–149

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj VJ, Altenbach D, Galati VL, Uscher M, Meyer AD, Boller T, Wiemken A (2004) Distinct regulation of sucrose: sucrose-1-fructosyltransferase (1-SST) and sucrose: fructan 6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. New Phytol 161:735–748

    Article  CAS  Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11. doi:10.1186/1471-2199-10-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Peshev D, Vergauwen R, Moglia A, Hideg E, Van den Ende W (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64:1025–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weis-beek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock CJ (1986) Fructans and the metabolism of sucrose in vascular plants. New Phytol 104:1–24

    Article  CAS  Google Scholar 

  • Pollock C, Cairns AJ (1991) Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol Plant Mol Biol 42:77–101

    Article  CAS  Google Scholar 

  • Poustini K, Siosemardeh A (2004) Ion distribution in wheat cultivars in response to salinity stress. Field Crop Res 85:125–133

    Article  Google Scholar 

  • Rahman NA (2008) Determination of glucose and fructose from glucose isomerization process by high-performance liquid chromatography with UV detection. Mod Appl Sci 2:151–154

    Article  CAS  Google Scholar 

  • Roitsch T (1999) Source–sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  CAS  PubMed  Google Scholar 

  • Schnyder H (1993) The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling—a review. New Phytol 123:233–245

    Article  Google Scholar 

  • Sharbatkhari M, Galeshi S, Shobbar ZS, Nakhoda B, Shahbazi M (2013) Assessment of agro-physiological traits for salt tolerance in drought-tolerant wheat genotypes. Int J Plant Prod 7:437–454

    CAS  Google Scholar 

  • Shiratake K (2007) Genetics of sucrose transporter in plants. Genes Genomes Genomics 1:73–80

    Google Scholar 

  • Silva MA, Jifon JL, Da Silva JA, Sharma G (2007) Use of physiology parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19:193–201

    Article  Google Scholar 

  • Sprenger N, Bortlik K, Brandt A, Boller T, Wiemken A (1995) Purification, cloning, and functional expression of sucrose:fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. Proc Natl Acad Sci USA 92:11652–11656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbarao GV, Nam NH, Chauhan YS, Johanson C (2000) Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits. J Plant Physiol 157:651–659

    Article  CAS  Google Scholar 

  • Trouverie J, Chateau-Joubert S, Thevenot C, Jacquemot MP, Prioul JL (2004) Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta 219:894–905

    Article  CAS  PubMed  Google Scholar 

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916. doi:10.1093/jxb/ern164

    Article  CAS  PubMed  Google Scholar 

  • Van den Ende W, Clerens S, Vergauwen R, Van Riet L, Van Laere A, Yoshida M, Kawakami A (2003) Fructan 1-exohydrolases. Beta-(2,1)-trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping, and cloning of two fructan 1-exohydrolase isoforms. Plant Physiol 131:621–631

    Article  PubMed Central  Google Scholar 

  • Van den Ende W, De Coninck B, Van Laere A (2004) Plant fructan exohydrolase: a role in signaling and defense? Trends Plant Sci 9:523–528

    Article  PubMed  Google Scholar 

  • Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25:803–815

    Article  Google Scholar 

  • Wardlaw IF, Willenbrink J (1994) Carbohydrate storage and mobilisation by the culm of wheat between heading and grain maturity: the relation to sucrose synthase and sucrose-phosphate synthase. Funct Plant Biol 21:255–271

    CAS  Google Scholar 

  • Watson R, Pritchard J, Malone M (2001) Direct measurement of sodium and potassium in the transpiration stream of saltexcluding and non-excluding varieties of wheat. J Exp Bot 52:1873–1881

    Article  CAS  PubMed  Google Scholar 

  • Xue GP, McIntyre CL, Jenkins CLD, Glassop D, Herwaarden AF, Shorter R (2008) Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat. Plant Physiol 146:441–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2004) Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta 220:331–343. doi:10.1007/s00425-004-1338-y

    Article  CAS  PubMed  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Dell B, Conocono E, Waters I, Setter T, Appels R (2009) Water deficits in wheat: fructan exohydrolase (1-FEH) mRNA expression and relationship to soluble carbohydrate concentrations in two varieties. New Phytol 181:843–850

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Li W, Chang X, Li R, Jing R (2014) Effects of favorable alleles for water-soluble carbohydrates at grain filling on grain weight under drought and heat stresses in wheat. PLoS One 9:1–12

    Google Scholar 

  • Zhang J, Xu Y, Chen W, Dell B, Vergauwen R, Biddulph B, Khan N, Luo H, Appels R, Van den Ende W (2015) A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. New Phytol 205:293–305

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Agricultural Biotechnology Research Institute of Iran (ABRII, Grant Number 7-05-05-90118). The authors are grateful to Dr. Sinem Bezircilioglu who kindly reviewed the manuscript in terms of English writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra-Sadat Shobbar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharbatkhari, M., Shobbar, ZS., Galeshi, S. et al. Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains. Planta 244, 191–202 (2016). https://doi.org/10.1007/s00425-016-2497-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2497-3

Keywords

Navigation