Skip to main content
Log in

Plant pressure sensitive adhesives: similar chemical properties in distantly related plant lineages

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A mixture of resins based on aliphatic esters and carboxylic acids occurs in distantly related genera Peperomia and Roridula , serving different functions as adhesion in seed dispersal and prey capture.

According to mechanical characteristics, adhesive secretions on both leaves of the carnivorous flypaper Roridula gorgonias and epizoochorous fruits of Peperomia polystachya were expected to be similar. The chemical analysis of these adhesives turned out to be challenging because of the limited available mass for analysis. Size exclusion chromatography and Fourier transform infrared spectroscopy were suitable methods for the identification of a mixture of compounds, most appropriately containing natural resins based on aliphatic esters and carboxylic acids. The IR spectra of the Peperomia and Roridula adhesive resemble each other; they correspond to that of a synthetic ethylene–vinyl acetate copolymer, but slightly differ from that of natural tree resins. Thus, the pressure sensitive adhesive properties of the plant adhesives are chemically proved. Such adhesives seem to appear independently in distantly related plant lineages, habitats, life forms, as well as plant organs, and serve different functions such as prey capture in Roridula and fruit dispersal in Peperomia. However, more detailed chemical analyses still remain challenging because of the small available volume of plant adhesive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson B, Midgley JJ (2002) It takes two to tango but three is a tangle: mutualists and cheaters on the carnivorous plant Roridula. Oecologia 132:369–373

    Article  Google Scholar 

  • Anderson B, Midgley JJ (2003) Digestive mutualism, an alternate pathway in plant carnivory. Oikos 102:221–224

    Article  Google Scholar 

  • Benedek I (2004) Pressure-sensitive adhesives and applications. CRC Press, Boca Raton

  • Benítez JJ, Matas AJ, Heredia A (2004) Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques. J Struct Biol 147:179–184

    Article  PubMed  Google Scholar 

  • Breitmaier E (2006) Terpenes. Flavors, fragrances, pharmaca, pheromones. Wiley, Weinheim

  • Carlquist S (1976) Wood anatomy of Roridulaceae, ecological and phylogenetic implications. Am J Bot 63:1003–1008

    Article  Google Scholar 

  • Carlquist S (1983) Intercontinental dispersal. In: Kubitzki K (ed) Dispersal and distribution. Verlag Paul Parey, Hamburg, pp 37–49

    Google Scholar 

  • Creton C (2003) Pressure-sensitive adhesives, an introductory course. MRS Bull 28:434–439. doi:10.1557/mrs2003.124

    Article  CAS  Google Scholar 

  • Czech Z, Kowalczyk A, Swiderska J (2011) Pressure-sensitive adhesives for medical applications. In: Akyar I (ed) Pressure-sensitive adhesives for medical applications, wide spectra of quality and control, chapter 17. InTech, Rijeka, pp 309–332

    Google Scholar 

  • Dahlstedt H (1900) Studien über Süd- und Central-Amerikanische Peperomien. Kungl. Svenska. Vetenskaps Akademiens Handlingar 332:1–218

  • De Ruig WG, Dijkstra G (1975) Characterization and identification of triglycerides by infrared spectroscopy. Eur J Lipid Sci Technol 77:211–216

    Google Scholar 

  • Dechant D (1972) Ultrarotspektroskopische Untersuchungen an Polymeren. Akademie-Verlag, Berlin

  • Dell B (1977) Distribution and function of resins and glandular hairs in Western Australian plants. J R Soc Western Austr 59:119–123

    Google Scholar 

  • Dell B, McComb AJ (1978) Plant resins—their formation, secretion and possible functions. Adv Bot Res 6:277–316. doi:10.1016/S0065-2296(08)60332-8

    Article  CAS  Google Scholar 

  • Derrick M (1989) Fourier transform infrared spectral analysis of natural resins used in furniture finishes. J Am Inst Conserv 28:43–56

    Article  Google Scholar 

  • Diels L (1928) Die Arten von Roridula L. Notizbl Botan Garten Mus Berlin-Dahlem 93:283–285

    Article  Google Scholar 

  • Dietemann P, Higgitt C, Kälin M, Edelmann MJ, Knochenmuss R, Zenobi R (2009) Aging and yellowing of triterpenoid resin varnishes—influence of aging conditions and resin composition. J Cult Herit 10:30–40

    Article  Google Scholar 

  • Eisner T, Aneshansley DJ (1983) Adhesive strength of the insect-trapping glue of a plant Befaria racemosa. Ann Entomol Soc Am 76:295–298

    Article  Google Scholar 

  • Ellis AG, Midgley JJ (1996) A new plant-animal mutualism involving a plant with sticky leaves and a resident hemipteran insect. Oecologia 106:478–481. doi:10.1007/BF00329705

    Article  Google Scholar 

  • Erni P, Varagnat M, Clasen C, Cresta J, McKinley H (2011) Microrheometry of sub-nanolitre biopolymer samples: non-Newtonian flow phenomena of carnivorous plant mucilage. Soft Matter 7(10889):1–10

    Google Scholar 

  • Faker M, Razavi Aghjeh MK, Ghaffari M, Seyyedi SA (2008) Rheology, morphology and mechanical properties of polyethylene/ethylene vinyl acetate copoloymer (PE/EVA) blends. Eur Polymer J 44:1834–1842

    Article  CAS  Google Scholar 

  • Feldstein MM, Khokhlov AR (2013) Molecular structures of pressure-sensitive adhesives. Annual meeting proceedings of the Adhesion Society, pp 1–3. http://www.adhesionsociety.org/wp-content/uploads/2013-Annual-Meeting-Abstracts/Feldstein_molecular_2013.pdf

  • Feldstein MM, Siegel RA (2012) Molecular and nanoscale factors governing pressure-sensitive adhesion strength of viscoelastic polymers. J Polymer Sci B 50:739–772

    Article  CAS  Google Scholar 

  • Frenzke L, Samain M-S, Wanke S, Neinhuis C (2012a) Exploring the attachment mechanisms of Peperomia fruits. In: Moulia B, Fournier M (eds) Proceedings of the 7th plant biomechanics international conference Clermont-Ferrand, p 298

  • Frenzke L, Samain M-S, Wanke S, Neinhuis C (2012b) Phyto post-it: exploring the attachment mechanisms of Peperomia fruits (Piperaceae). 1st International conference on biological and biomimetic adhesives, 9–11 May 2012, Lissabon, Portugal, p 20

  • Frenzke L, Samain M-S, Wanke S, Neinhuis C (2012c) Exploring the attachment mechanisms of Peperomia fruits (Piperaceae). Bio-inspired materials- international conference on biological materials science, 20–23 March 2012, Potsdam, Germany, p 26

  • Frenzke L, Samain M-S, Symmank L, Goetghebeur P, Neinhuis C, Wanke S (2014) Evolution of fruit structures correlates with species richness and transition to epiphytism in Peperomia. Bio Div Evol 2014. 15th annual meeting of the society of biological systematics (GfBS) conference, 22nd international symposium “Biodiversity and Evolutionary Biology”, Dresden, p 40

  • Frenzke L, Scheiris E, Pino G, Symmank L, Goetghebeur P, Neinhuis C, Wanke S, Samain M-S (2015) A revised infrageneric classification of the genus Peperomia (Piperaceae). Taxon 64:424–444

    Article  Google Scholar 

  • Ganewatta MS, Chen YP, Wang J, Zhou J, Ebalunode J, Nagarkatti M, Decho AW, Tang C (2014) Bio-inspired resin acid-derived materials as anti-bacterial resistance agents with unexpected activities. Chem Sci 5:2011–2016

    Article  CAS  Google Scholar 

  • Gunatilaka AL (2012) Plant natural products. In: Civjan N (ed) Natural products in chemical biology. Wiley, Oxford, pp 3–29

    Google Scholar 

  • Habenicht G (2002) Kleben, Grundlagen, Technologien, Anwendung, 4th edn. Springer, Berlin

  • Hartmeyer S (1998) Carnivory in Byblis revisited II, the phenomenon of symbiosis on insect trapping plants. Carniv Plant Newsl 27:110–113

    Google Scholar 

  • Hummel DO, Scholl F (1978) Atlas of polymer and plastics analysis, 2nd edn. Verlag Chemie International, Munich

  • Koenig JL (1999) Spectroscopy of polymers. Elsevier Science Inc., New York

  • Langenheim JH (2003) Plant resins chemistry, evolution, ecology, ethnobotany. Timber Press, Inc, Portland

  • Lloyd FE (1934) Is Roridula a carnivorous plant? Can J Res 10:780–786

    Article  Google Scholar 

  • Manning J (2004) SASOL first field guide to Fynbos of Southern Africa. Struik Publishers, Cape Town

  • Marloth R (1903) Some recent observations on the biology of Roridula. Ann Bot 17:151–158

    Google Scholar 

  • Marloth R (1910) Further observations on the biology of Roridula. Trans R Soc South Afr 2:59–62

    Article  Google Scholar 

  • Marloth R (1925) Flora of South Africa, Part I, vol 2. University Press, Cambridge, pp 26–30

    Google Scholar 

  • Midgley JJ, Stock WD (1998) Natural abundance of δ 15 N confirms insectivorous habit of Roridula gorgonias, despite it having no proteolytic enzymes. Ann Bot 82:387–388

    Article  Google Scholar 

  • Mithöfer A, Reichelt M, Nakamura Y (2013) Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin. Plant Biol 16:982–987

    Article  Google Scholar 

  • Nakamura Y, Reichelt M, Mayer VE, Mithöfer A (2013) Jasmonates trigger prey-induced formation of ‘outer stomach’ in carnivorous sundew plants. Proc R Soc B 280:20130228. doi:10.1098/rspb.2013.0228

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavlovič A, Saganová M (2015) A novel insight into the cost-benefit model for the evolution of botanical carnivory. Ann Bot 115:1075–1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Płachno BJ, Adamec L, Lichtscheidl IK, Peroutka M, Adlassnig W, Vrba J (2006) Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants. Plant Biol 8:813–820

    Article  PubMed  Google Scholar 

  • Płachno BJ, Adamec L, Huet H (2009) Mineral nutrient uptake from prey and glandular phophatase activity as a dual test of carnivory in semi-desert plants with glandular leaves suspected of carnivory. Ann Bot 104:649–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Radotić K, Roduit C, Simonović J, Hornitschek P, Fankhauser C, Mutavdžić D, Steinbach G, Dietler G, Kasas S (2012) Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth. Biophys J 103:386–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridley HN (1930) Dispersal by simple adhesion. In: Ridley HN (ed) The dispersal of plants throughout the world. L. Reeve, pp 532–550

  • Samain M-S, Vanderschaeve L, Chaerle P, Goetghebeur P, Neinhuis C, Wanke S (2009) Is morphology telling the truth about the evolution of the species rich genus Peperomia (Piperaceae)? Plant Syst Evol 278:1–21

    Article  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307. doi:10.1038/nchembio.165

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E (1969) Sekretion und Exkretion bei Pflanzen. Protoplasmatologia, Handbuch der Protoplasmaforschung, Bd. 8, Physiologie des Protoplasmas, Wien, Springer, New York

  • Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spec 43:13–25

    Article  CAS  Google Scholar 

  • Simoneit BRT, Medeiros PM, Wollenweber E (2008) Triterpenoids as major components of the insect-trapping glue of Roridula species. Z Naturforsch 63c:625–630

  • Socrates S (1980) Infrared characteristic group frequencies. Wiley, Chichester

  • Sorensen AE (1986) Seed dispersal by adhesion. Ann Rev Ecol Syst 17:443–463

    Article  Google Scholar 

  • Symmank L, Samain MS, Smith JF, Pino G, Stoll A, Goetghebeur P, Neinhuis C, Wanke S (2011) The extraordinary journey of Peperomia subgenus Tildenia (Piperaceae): insights into diversification and colonization patterns from its cradle in Peru to the Trans-Mexican Volcanic Belt. J Biogeography 38:2337–2349

    Article  Google Scholar 

  • Tauer K (2004) Latex particles. In: Caruso F (ed) Colloids and colloid assemblies. Wiley, Weinheim, pp 1–51

    Google Scholar 

  • van der Pijl L (1982) Principles of dispersal in higher plants. Springer, Berlin

  • Voigt D, Gorb SN (2008) Insect trap as habitat, cohesion failure mechanism prevents adhesion of bugs Pameridea roridulae Heteroptera, Miridae, Bryocorinae to the sticky surface of the plant Roridula gorgonias Roridulaceae. J Exp Biol 211:2647–2657. doi:10.1242/jeb.019273

    Article  PubMed  Google Scholar 

  • Voigt D, Gorb SN (2010) Desiccation resistance of adhesive secretion in the protocarnivorous plant Roridula gorgonias as an adaptation to periodically dry environment. Planta 232:1511–1515. doi:10.1007/s00425-010-1270-2

    Article  CAS  PubMed  Google Scholar 

  • Voigt D, Gorb EV, Gorb SN (2009) Hierarchical organisation of the trap in the protocarnivorous plant Roridula gorgonias Roridulaceae. J Exp Biol 212:3184–3191. doi:10.1242/jeb.034280

    Article  PubMed  Google Scholar 

  • Voigt D, Konrad W, Gorb S (2015) A universal glue: underwater adhesion of the secretion of the carnivorous flypaper plant Roridula gorgonias. Interface Focus 5(20140053):1–7. doi:10.1098/rsfs.2014.0053

    Google Scholar 

  • Weidener RA (1969) Thermoplastic adhesives. In: Patrick RL (ed) Treatise on adhesion and adhesives, vol 2., MaterialsMarcel Dekker, New York, pp 429–484

    Google Scholar 

  • Witten T, Pinus P (2004) Structured fluids. Polymers, colloids, surfactants. Oxford University Press, New York

  • Wollenweber E (1999) Triterpenoids in lipophilic leaf and stem coatings. Biochem Syst Ecol 27:103–105

    Article  CAS  Google Scholar 

  • Wollenweber E (2007) Flavonoids occuring in the sticky resin on Roridula dentata and Roridula gorgonias (Roridulaceae). Carniv Plant Newsl 36:77–80

    Google Scholar 

  • Zimmermann B, Kohler A (2014) Shedding light on plant biology by Fourier transform infrared spectroscopy of pollen. Spectrosc Eur 26:20–23

    CAS  Google Scholar 

  • Zosel A (2001) Molecular structure, mechanical behaviour and adhesion performance of pressure sensitive adhesives. Adhes Sealants Ind Mag 193–203

Download references

Acknowledgments

D. Fietsch, B. Ditsch and colleagues (Botanical Garden, Technische Universität, Dresden, Germany) are acknowledged for cultivation of plants. K. Keller (Augsburg, Germany) kindly provided plants and valuable information. We thank the anonymous reviewer for the helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Voigt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frenzke, L., Lederer, A., Malanin, M. et al. Plant pressure sensitive adhesives: similar chemical properties in distantly related plant lineages. Planta 244, 145–154 (2016). https://doi.org/10.1007/s00425-016-2496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2496-4

Keywords

Navigation