Advertisement

Planta

, Volume 244, Issue 1, pp 19–38 | Cite as

Renaissance in phytomedicines: promising implications of NGS technologies

  • Sonal Sharma
  • Neeta ShrivastavaEmail author
Review

Abstract

Main conclusion

Medicinal plant research is growing significantly in faith to discover new and more biologically compatible phytomedicines. Deposition of huge genome/trancriptome sequence data assisted by NGS technologies has revealed the new possibilities for producing upgraded bioactive molecules in medicinal plants.

Growing interest of investors and consumers in the herbal drugs raises the need for extensive research to open the facts and details of every inch of life canvas of medicinal plants to produce improved quality of phytomedicines. As in agriculture crops, knowledge emergence from medicinal plant’s genome/transcriptome, can be used to assure their amended quality and these improved varieties are then transported to the fields for cultivation. Genome studies generate huge sequence data which can be exploited further for obtaining information regarding genes/gene clusters involved in biosynthesis as well as regulation. This can be achieved rapidly at a very large scale with NGS platforms. Identification of new RNA molecules has become possible, which can lead to the discovery of novel compounds. Sequence information can be combined with advanced phytochemical and bioinformatics tools to discover functional herbal drugs. Qualitative and quantitative analysis of small RNA species put a light on the regulatory aspect of biosynthetic pathways for phytomedicines. Inter or intra genomic as well as transcriptomic interactive processes for biosynthetic pathways can be elucidated in depth. Quality management of herbal material will also become rapid and high throughput. Enrichment of sequence information will be used to engineer the plants to get more efficient phytopharmaceuticals. The present review comprises of role of NGS technologies to boost genomic studies of pharmaceutically important plants and further, applications of sequence information aiming to produce enriched phytomedicines. Emerging knowledge from the medicinal plants genome/transcriptome can give birth to deep understanding of the processes responsible for biosynthesis of medicinally important compounds.

Keywords

Next generation sequencing Medicinal plants Genome Transcriptome Phytomedicines Bioactive molecules 

Notes

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.

References

  1. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75PubMedCrossRefGoogle Scholar
  2. Al-Dous EK, George B, Al-Mahmoud ME et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29:521–527PubMedCrossRefGoogle Scholar
  3. Amira EA, Behija SE, Beligh M et al (2012) Effects of the ripening stage on phenolic profile, phytochemical composition and antioxidant activity of date palm fruit. J Agric Food Chem 60:10896–10902CrossRefGoogle Scholar
  4. Annadurai RS, Jayakumar V, Mugasimangalam RC et al (2012) Next generation sequencing and de novo transcriptome analysis of Costus pictus D. Don, a non-model plant with potent anti-diabetic properties. BMC Genomics 13:663. doi: 10.1186/1471-2164-13-663 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Annadurai RS, Neethiraj R, Jayakumar V et al (2013) De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids. PLoS One 8:e56217. doi: 10.1371/journal.pone.0056217 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Appendino G, Chianese G, Taglialatela-Scafati O (2011) Cannabinoids: occurrence and medicinal chemistry. Curr Med Chem 18:1085–1099PubMedCrossRefGoogle Scholar
  7. Baliga MS, Baliga BRV, Kandathil SM et al (2011) A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res Int 44:1812–1822. doi: 10.1016/j.foodres.2010.07.004 CrossRefGoogle Scholar
  8. Bardou F, Ariel F, Simpson CG et al (2014) Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev Cell 30:166–176. doi: 10.1016/j.devcel.2014.06.017 PubMedCrossRefGoogle Scholar
  9. Barrero RA, Chapman B, Yang Y et al (2011) De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes. BMC Genomics. doi: 10.1186/1471-2164-12-600 Google Scholar
  10. Bekheet SA, Hanafy MS (2011) Towards sex determination of date palm. In: Jain SM, Jameel MA, Johnson DV (eds) Date palm biotechnology, 1st edn. Springer, Netherlands, pp 551–566CrossRefGoogle Scholar
  11. Bell DC, Thomas WK, Murtagh KM et al (2012) DNA base identification by electron microscopy. Microsc Microanal 18:1049–1053PubMedCrossRefGoogle Scholar
  12. Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 82:1336–1345Google Scholar
  13. Bonnet E, Van de Peer Y, Rouzé P (2006) The small RNA world of plants. New Phytol 171:451–468PubMedCrossRefGoogle Scholar
  14. Bouvier F, Dogbo O, Camara B (2003) Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300:2089–2091PubMedCrossRefGoogle Scholar
  15. Boycheva S, Daviet L, Wolfender JL, Fitzpatrick TB (2014) The rise of operon-like gene clusters in plants. Trends Plant Sci 19:447–459PubMedCrossRefGoogle Scholar
  16. Brozynska M, Furtado A, Henry RJ (2014) Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding. PLoS One 9:e110387. doi: 10.1371/journal.pone.0110387 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cao H, Nuruzzaman M, Xiu H et al (2015) Transcriptome analysis of methyl jasmonate-elicited Panax ginseng adventitious roots to discover putative ginsenoside biosynthesis and transport genes. Int J Mol Sci 16:3035–3057PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chagné D, Crowhurst RN, Pindo M et al (2014) The draft genome sequence of European pear (Pyrus communis L. “Bartlett”). PLoS One 9:1–12. doi: 10.1371/journal.pone.0092644 CrossRefGoogle Scholar
  19. Chen S, Sun YZ, Xu J et al (2010) Strategies of the study on herb genome program. Yao Xue Xue Bao 45:807–812PubMedGoogle Scholar
  20. Chen S, Li Xiang Xu, Guo QL (2011) An introduction to the medicinal plant genome project. Front Med 5:178–184PubMedCrossRefGoogle Scholar
  21. Chen J, Dong X, Li Q et al (2013) Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BMC Genomics. doi: 10.1186/1471-2164-14-857 Google Scholar
  22. Chen J, Chan PH, Lam CTW et al (2015) Fruit of Ziziphus jujuba (Jujube) at two stages of maturity: distinction by metabolic profiling and biological assessment. J Agric Food Chem 63:739–744PubMedCrossRefGoogle Scholar
  23. Cheng X, Su X, Chen X et al (2014) Biological ingredient analysis of traditional Chinese medicine preparation based on high-throughput sequencing: the story for Liuwei Dihuang Wan. Sci Rep 4:5147PubMedPubMedCentralGoogle Scholar
  24. Chiang Y-M, Lee K-H, Sanchez JF et al (2009) Unlocking fungal cryptic natural products. Nat Prod Commun 4:1505–1510PubMedPubMedCentralGoogle Scholar
  25. Coghlan ML, Haile J, Houston J et al (2012) Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet 8:e1002657. doi: 10.1371/journal.pgen.1002657 PubMedPubMedCentralCrossRefGoogle Scholar
  26. http://www.qiagen.com, press release October 2014. Last accessed on 26 june 2015
  27. Dai X, Zhao PX (2011) PsRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:155–159CrossRefGoogle Scholar
  28. Ding J, Lu Q, Ouyang Y et al (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci 109:2654–2659PubMedPubMedCentralCrossRefGoogle Scholar
  29. El-Alfy AT, Ivey K, Robinson K et al (2010) Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol Biochem Behav 95:434–442PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fang Y, Wu H, Zhang T (2012) A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS One. doi: 10.1371/journal.pone.0037164 Google Scholar
  31. Fischbach M, Voigt CA (2010) Prokaryotic gene clusters: a rich toolbox for synthetic biology. Biotechnol J 5:1277–1296PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fougat R, Joshi C, Kulkarni K et al (2014) Rapid development of microsatellite markers for Plantago ovata Forsk.: using next generation sequencing and their cross-species transferability. Agriculture 4:199–216CrossRefGoogle Scholar
  33. Galimberti A, De Mattia F, Losa A et al (2013) DNA barcoding as a new tool for food traceability. Food Res Int 50:55–63CrossRefGoogle Scholar
  34. Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317PubMedCrossRefGoogle Scholar
  35. Gantait S, Debnath S, Nasim Ali M (2014) Genomic profile of the plants with pharmaceutical value. 3 Biotech. doi: 10.1007/s13205-014-0218-9 Google Scholar
  36. Gao QH, Sen WuC, Wang M (2013) The Jujube (Ziziphus Jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits. J Agric Food Chem 61:3351–3363. doi: 10.1021/jf4007032 PubMedCrossRefGoogle Scholar
  37. Gao W, Sun H-X, Xiao H et al (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genomics. doi: 10.1186/1471-2164-15-73 Google Scholar
  38. Ge Q, Zhang Y, Hua W-P et al (2015) Combination of transcriptomic and metabolomic analyses reveals a JAZ repressor in the jasmonate signaling pathway of Salvia miltiorrhiza. Sci Rep 5:14048–14061. doi: 10.1038/srep14048 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Graham IA, Besser K, Blumer S et al (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327:328–331PubMedCrossRefGoogle Scholar
  40. Guo Q, Ma X, Wei S et al (2014) De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer’s properties. BMC Genomics. doi: 10.1186/1471-2164-15-676 Google Scholar
  41. Gupta P, Goel R, Pathak S et al (2013) De Novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS One. doi: 10.1371/journal.pone.0062714 Google Scholar
  42. Hamad I, Abdelgawad H, Al Jaouni S et al (2015) Metabolic analysis of various date palm fruit (Phoenix dactylifera L.) cultivars from Saudi Arabia to assess their nutritional quality. Molecules 20:13620–13641. doi: 10.3390/molecules200813620 PubMedCrossRefGoogle Scholar
  43. Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70:177–190PubMedCrossRefGoogle Scholar
  44. Han XJ, Wang YD, Chen YC et al (2013) Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba. PLoS One. doi: 10.1371/journal.pone.0076890 Google Scholar
  45. Hansen BO, Vaid N, Musialak-Lange M et al (2014) Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front Plant Sci. doi: 10.3389/fpls.2014.00394 PubMedPubMedCentralGoogle Scholar
  46. Hao DC, Chen SL, Xiao PG, Liu M (2012) Application of high-throughput sequencing in medicinal plant transcriptome studies. Drug Dev Res 73:487–498. doi: 10.1002/ddr.21041 CrossRefGoogle Scholar
  47. He M, Wang Y, Hua W et al (2012) De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites. PLoS One. doi: 10.1371/journal.pone.0042081 Google Scholar
  48. Hegde PK, Rao HA, Rao PN (2014) A review on insulin plant (Costus igneus Nak). Pharmacogn Rev 8:67–72PubMedPubMedCentralCrossRefGoogle Scholar
  49. Heo JB, Lee Y-S, Sung S (2013) Epigenetic regulation by long noncoding RNAs in plants. Chromosome Res 21:685–693PubMedPubMedCentralCrossRefGoogle Scholar
  50. Higashi Y, Saito K (2013) Network analysis for gene discovery in plant-specialized metabolism. Plant Cell Environ 36:1597–1606PubMedCrossRefGoogle Scholar
  51. Hirsch CN, Buell CR (2013) Tapping the promise of genomics in species with complex, nonmodel genomes. Annu Rev Plant Biol 64:89–110PubMedCrossRefGoogle Scholar
  52. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One. doi: 10.1371/journal.pone.0019254 Google Scholar
  53. Hu L, Hao C, Fan R et al (2015) De novo assembly and characterization of fruit transcriptome in black pepper (Piper nigrum). PLoS One. doi: 10.1371/journal.pone.0129822 Google Scholar
  54. Huang Y, Zhang JL, Yu XL et al (2013) Molecular functions of small regulatory noncoding RNA. Biochemistry 78:221–230PubMedGoogle Scholar
  55. Jehan T, Lakhanpaul S (2006) Single nucleotide polymorphism (SNP)—methods and applications in plant genetics: a review. Indian J Biotechnol 5:435–459Google Scholar
  56. Jiang J, Wang Y, Zhu B et al (2015) Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids. BMC Plant Biol. doi: 10.1186/s12870-015-0417-5 Google Scholar
  57. Jin J, Kim MJ, Dhandapani S et al (2015) The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase. J Exp Bot 66:3959–3975PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53PubMedCrossRefGoogle Scholar
  59. Joshi K, Chavan P, Warude D, Patwardhan B (2004) Molecular markers in herbal drug technology. Curr Sci 87:159–165Google Scholar
  60. Kalra S, Puniya BL, Kulshreshtha D (2013) De novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum. PLoS One. doi: 10.1371/journal.pone.0083336 Google Scholar
  61. Khadke GN, Hima Bindu K, Ravishankar KV (2012) Development of SCAR marker for sex determination in dioecious betelvine (Piper betle L.). Curr Sci 103:712–716Google Scholar
  62. Krishnan NM, Pattnaik S, Jain P et al (2012) A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics. doi: 10.1186/1471-2164-13-464 Google Scholar
  63. Krokida A, Delis C, Geisler K et al (2013) A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis. New Phytol 200:675–690PubMedCrossRefGoogle Scholar
  64. Larkin J, Henley R, Bell DC et al (2013) Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano 7:10121–10128PubMedPubMedCentralCrossRefGoogle Scholar
  65. http://medicinalplantgenomics.msu.edu. Last accessed on 26 june 2015
  66. http://www.reveo.com/node/309. Last accessed on 26 june 2015
  67. http://www.reveo.com/node/52. Last accessed on 26 june 2015
  68. http://gnubio.com/. Last accessed on 26 june 2015
  69. http://www.geniachip.com/technology/. Last accessed on 26 june 2015
  70. http://www.stratosgenomics.com. Last accessed on 26 june 2015
  71. http://www.base4.co.uk/. Last accessed on 26 june 2015
  72. http://www.quantumbiosystems.com. Last accessed on 26 june 2015
  73. http://genapsys.com. Last accessed on 26 june 2015
  74. Laszlo AH, Derrington IM, Ross BC et al (2014) Decoding long nanopore sequencing reads of natural DNA. Nat Biotechnol 32:829–833PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li Y, Luo H-M, Sun C et al (2010) EST analysis reveals putative genes involved in glycyrrhizin biosynthesis. BMC Genomics. doi: 10.1186/1471-2164-11-268 Google Scholar
  76. Li C, Zhu Y, Guo X et al (2013) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics. doi: 10.1186/1471-2164-14-245 Google Scholar
  77. Li L, Eichten SR, Shimizu R et al (2014a) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol. doi: 10.1186/gb-2014-15-2-r40 Google Scholar
  78. Li X, Yang Y, Henry RJ et al (2014b) Plant DNA barcoding: from gene to genome. Biol Rev. doi: 10.1111/brv.12104 Google Scholar
  79. Li Y, Xu C, Lin X (2014c) De novo assembly and characterization of the fruit transcriptome of Chinese jujube (Ziziphus jujuba Mill.) using 454 pyrosequencing and the development of novel tri-nucleotide SSR markers. PLoS One. doi: 10.1371/journal.pone.0106438 Google Scholar
  80. Li Y, Wang X, Chen T et al (2015) RNA-seq based De Novo transcriptome assembly and gene discovery of Cistanche deserticola fleshy stem. PLoS One 10:e0125722. doi: 10.1371/journal.pone.0125722 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lin X, Zhang J, Li Y et al (2011) Functional genomics of a living fossil tree, Ginkgo, based on next-generation sequencing technology. Physiol Plant 143:207–218PubMedCrossRefGoogle Scholar
  82. Liu S, Lu B, Zhao Q et al (2013a) Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv Mater 25:4549–4554PubMedCrossRefGoogle Scholar
  83. Liu Y, Huo N, Dong L et al (2013b) Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants. PLoS One. doi: 10.1371/journal.pone.0057533 Google Scholar
  84. Liu M-J, Zhao J, Cai Q-L et al (2014) The complex jujube genome provides insights into fruit tree biology. Nat Commun. doi: 10.1038/ncomms6315 Google Scholar
  85. Loke K-K, Rahnamaie-Tajadod R, Yeoh C-C et al (2016) RNA-seq analysis for secondary metabolite pathway gene discovery in Polygonum minus. Genom Data 7:12–13PubMedCrossRefGoogle Scholar
  86. Lu Y, Rijzaani H, Karcher D et al (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1216898110 Google Scholar
  87. Luo H, Sun C, Sun Y et al (2011) Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics. doi: 10.1186/1471-2164-12-S5-S5 Google Scholar
  88. Luo Y, Cobb RE, Zhao H (2014) Recent advances in natural product discovery. Curr Opin Biotechnol 30:230–237PubMedCrossRefGoogle Scholar
  89. Mahajan RTCM (2009) Phyto-Pharmacology of Ziziphus jujuba Mill—a plant review. Pharmacogn Rev 3:320–329Google Scholar
  90. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genom. doi: 10.1155/2012/728398
  91. Marques JV, Kim KW, Lee C et al (2013) Next generation sequencing in predicting gene function in podophyllotoxin biosynthesis. J Biol Chem 288:466–479PubMedCrossRefGoogle Scholar
  92. Matsuba Y, Nguyen TTH, Wiegert K et al (2013) Evolution of a complex locus for terpene biosynthesis in Solanum. Plant Cell 25:2022–2036PubMedPubMedCentralCrossRefGoogle Scholar
  93. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci 74:560–564PubMedPubMedCentralCrossRefGoogle Scholar
  94. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46PubMedCrossRefGoogle Scholar
  95. Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome. doi: 10.3835/plantgenome2013.030001in Google Scholar
  96. Ming R, Vanburen R, Liu Y et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome. doi: 10.1186/gb-2013-14-5-r41 Google Scholar
  97. Mishra P, Kumar A, Nagireddy A et al (2015) DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol J. doi: 10.1111/pbi.12419 PubMedGoogle Scholar
  98. Mochida K, Shinozaki K (2011) Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol 52:2017–2038. doi: 10.1093/pcp/pcr153 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Morey M, Fernández-marmiesse A, Castiñeiras D et al (2013) A glimpse into past, present and future DNA sequencing. Mol Genet Metab 110:3–24PubMedCrossRefGoogle Scholar
  100. Mugford ST, Louveau T, Melton R et al (2013) Modularity of plant metabolic gene clusters: a trio of linked genes that are collectively required for acylation of triterpenes in oat. Plant Cell 25:1078–1092PubMedPubMedCentralCrossRefGoogle Scholar
  101. Muranaka T, Saito K (2013) Phytochemical genomics on the way. Plant Cell Physiol 54:645–646PubMedCrossRefGoogle Scholar
  102. Mutz K-O, Heilkenbrinker A, Lönne M et al (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24:22–30PubMedCrossRefGoogle Scholar
  103. Navarro E, Alonso PJ, Alonso SJ et al (2000) Cardiovascular activity of a methanolic extract of Digitalis purpurea spp. heywoodii. J Ethnopharmacol 71:437–442PubMedCrossRefGoogle Scholar
  104. Ndagijimana A, Wang X, Pan G et al (2013) A review on indole alkaloids isolated from Uncaria rhynchophylla and their pharmacological studies. Fitoterapia 86:35–47PubMedCrossRefGoogle Scholar
  105. Nutzmann H, Osbourn A (2014) Gene clustering in plant specialized metabolism. Curr Opin Biotechnol 26:91–99PubMedCrossRefGoogle Scholar
  106. Pal T, Malhotra N, Chanumolu SK, Chauhan RS (2015) Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum wall. Planta 242(1):239–258PubMedCrossRefGoogle Scholar
  107. Palla M, Guo W, Shi S et al (2014) DNA sequencing by synthesis using 3′-O-azidomethyl nucleotide reversible terminators and surface-enhanced Raman spectroscopic detection. RSC Adv 4:49342–49346PubMedPubMedCentralCrossRefGoogle Scholar
  108. Park S, Ruhlman TA, Sabir JSM et al (2014) Complete sequences of organelle Genomicses from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids. BMC Genomics. doi: 10.1186/1471-2164-15-405 Google Scholar
  109. Park H-S, Kim K-Y, Kim K (2015) The complete chloroplast genome sequence of an important medicinal plant Cynanchum wilfordii (Maxim) Hemsl. (Apocynaceae). Mitochondrial DNA. doi: 10.3109/19401736.2015.1079887 Google Scholar
  110. Qian J, Song J, Gao H et al (2013) The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS One. doi: 10.1371/journal.pone.0057607 Google Scholar
  111. Rama Reddy NR, Mehta RH, Soni PH (2015) Next generation sequencing and transcriptome analysis predicts biosynthetic pathway of sennosides from Senna (Cassia angustifolia Vahl.), a non-model plant with potent laxative properties. PLoS One. doi: 10.1371/journal.pone.0129422 PubMedPubMedCentralGoogle Scholar
  112. Ramilowski JA, Sawai S, Seki H et al (2013) Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals. Plant Cell Physiol 54:697–710PubMedCrossRefGoogle Scholar
  113. Rastogi S, Meena S, Bhattacharya A et al (2014) De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genomics. doi: 10.1186/1471-2164-15-588 PubMedPubMedCentralGoogle Scholar
  114. Rastogi S, Kalra A, Gupta V et al (2015) Unravelling the genome of Holy basil: an “incomparable” “elixir of life” of traditional Indian medicine. BMC Genomics. doi: 10.1186/s12864-015-1640-z Google Scholar
  115. Ray S, Satya P (2014) Next generation sequencing technologies for next generation plant breeding. Front Plant Sci. doi: 10.3389/fpls.2014.00367 PubMedPubMedCentralGoogle Scholar
  116. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166PubMedCrossRefGoogle Scholar
  117. Ruhlman T, Daniell H (2007) Plastid pathways. In: Verpoorte R, Alfermann AW, Johnson TS (eds) Applications of plant metabolic engineering. Springer, Netherlands, pp 79–108CrossRefGoogle Scholar
  118. Salgotra RK, Gupta BB, Stewart CN (2014) From genomics to functional markers in the era of next-generation sequencing. Biotechnol Lett 36:417–426PubMedCrossRefGoogle Scholar
  119. Sanger F, Nicklen SCA (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467. doi: 10.1073/pnas.74.12.5463 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sangwan RS, Tripathi S, Singh J et al (2013) De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene 525:58–76PubMedCrossRefGoogle Scholar
  121. Sarwat M, Yamdagni MM (2014) DNA barcoding, microarrays and next generation sequencing: recent tools for genetic diversity estimation and authentication of medicinal plants. Crit Rev Biotechnol. doi: 10.3109/07388551.2014.947563 PubMedGoogle Scholar
  122. Sarwat M, Nabi G, Das S, Srivastava PS (2012) Molecular markers in medicinal plant biotechnology: past and present. Crit Rev Biotechnol 32:74–92. doi: 10.3109/07388551.2011.551872 PubMedCrossRefGoogle Scholar
  123. Schneider GF, Dekker C (2012) DNA sequencing with nanopores. Nat Biotechnol 30:326–328PubMedCrossRefGoogle Scholar
  124. Seesai SA, Mangul S, Caciula A, Zelikovsky A, Mandoiu I (2014) Transcriptome reconstruction and quantification from RNA sequencing Data. In: Poptsova MS (ed) Genome analysis: current procedures and applications, 1st edn. Caister Academic Press, Norfolk, pp 39–60Google Scholar
  125. Senthil K, Jayakodi M, Thirugnanasambantham P et al (2015) Transcriptome analysis reveals in vitro cultured Withania somnifera leaf and root tissues as a promising source for targeted withanolide biosynthesis. BMC Genomics. doi: 10.1186/s12864-015-1214-0 PubMedPubMedCentralGoogle Scholar
  126. Shi C, Yang H, Wei C et al (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics. doi: 10.1186/1471-2164-12-131 Google Scholar
  127. Sui C, Zhang J, Wei J et al (2011) Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins. BMC Genomics 12:539. doi: 10.1186/1471-2164-12-539 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sui C, Chen M, Xu J et al (2015) Comparison of root transcriptomes and expressions of genes involved in main medicinal secondary metabolites from Bupleurum chinense and Bupleurum scorzonerifolium, the two Chinese official Radix bupleuri source species. Physiol Plant 153:230–242. doi: 10.1111/ppl.12254 PubMedCrossRefGoogle Scholar
  129. Sumner LW, Lei Z, Nikolaubc BJ, Saitode K (2014) Modern plan metabolomics: advanced natural product gene discoveries, improved technologies and future prospects. Prod Rep, Nat. doi: 10.1039/c4np00072b Google Scholar
  130. Sun Y, Luo H, Li Y et al (2011a) Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genomics 12:533. doi: 10.1186/1471-2164-12-533 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sun YF, Liang ZS, Shan CJ et al (2011b) Comprehensive evaluation of natural antioxidants and antioxidant potentials in Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou fruits based on geographical origin by TOPSIS method. Food Chem 124:1612–1619. doi: 10.1016/j.foodchem.2010.08.026 CrossRefGoogle Scholar
  132. Sun X, Zhou S, Meng F, Liu S (2012) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31:1823–1828PubMedCrossRefGoogle Scholar
  133. Swaminathan S, Morrone D, Wang Q et al (2009) CYP76M7 is an ent-cassadiene C11alpha-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21:3315–3325PubMedPubMedCentralCrossRefGoogle Scholar
  134. Takahashi N, Goto T, Taimatsu A et al (2009) Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARgamma activation. Biochem Biophys Res Commun 390:1372–1376. doi: 10.1016/j.bbrc.2009.10.162 PubMedCrossRefGoogle Scholar
  135. Tan LQ, Wang L-Y, Wei K et al (2013) Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS One. doi: 10.1371/journal.pone.0081611 Google Scholar
  136. Tanaka H, Hamai C, Kanno T, Kawai T (1999) High-resolution scanning tunneling microscopy imaging of DNA molecules on Cu (111) surfaces. Surf Sci 432:L611–L616CrossRefGoogle Scholar
  137. Tang Q, Ma X, Mo C et al (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics. doi: 10.1186/1471-2164-12-343 Google Scholar
  138. Tang X, Xiao Y, Lv T et al (2014) High-throughput sequencing and De Novo assembly of the Isatis indigotica transcriptome. PLoS One. doi: 10.1371/journal.pone.0102963 Google Scholar
  139. Taura F, Sirikantaramas S, Shoyama Y et al (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581:2929–2934. doi: 10.1016/j.febslet.2007.05.043 PubMedCrossRefGoogle Scholar
  140. Thompson JF, Milos PM (2011) The properties and applications of single-molecule DNA sequencing. Genome Biol. doi: 10.1186/gb-2011-12-2-217 Google Scholar
  141. Treffer R, Böhme R, Deckert-Gaudig T et al (2012) Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. Biochem Soc Trans 40:609–614. doi: 10.1042/BST20120033 PubMedCrossRefGoogle Scholar
  142. Van Bakel H, Stout JM, Cote AG et al (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol. doi: 10.1186/gb-2011-12-10-r102 PubMedPubMedCentralGoogle Scholar
  143. Van Wolfswinkel JC, Ketting RF (2010) The role of small non-coding RNAs in genome stability and chromatin organization. J Cell Sci 123:1825–1839. doi: 10.1242/jcs.061713 PubMedCrossRefGoogle Scholar
  144. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55. doi: 10.1016/j.tibtech.2004.11.005 PubMedCrossRefGoogle Scholar
  145. Vashisht I, Mishra P, Pal T et al (2015) Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta 241:1255–1268. doi: 10.1007/s00425-015-2255-y PubMedCrossRefGoogle Scholar
  146. Venta K, Shemer G, Puster M et al (2013) Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. ACS Nano 7:4629–4636. doi: 10.1021/nn4014388 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wada M, Takahashi H, Altaf-Ul-Amin M et al (2012) Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes. Gene 503:56–64. doi: 10.1016/j.gene.2012.04.043 PubMedCrossRefGoogle Scholar
  148. Wang Z, Hobson N, Galindo L et al (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473PubMedCrossRefGoogle Scholar
  149. Wang Y, Pan Y, Liu Z et al (2013) De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism. BMC Genomics. doi: 10.1186/1471-2164-14-836 Google Scholar
  150. Wang Y, Yang Q, Wang Z (2015) The evolution of nanopore sequencing. Front Genet. doi: 10.3389/fgene.2014.00449 Google Scholar
  151. Winzer T, Gazda V, He Z et al (2012) A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid Noscapine. Science 336:1704–1708PubMedCrossRefGoogle Scholar
  152. Wu Q, Sun C, Luo H et al (2011) Transcriptome analysis of Taxus cuspidata needles based on 454 pyrosequencing. Planta Med 77:394–400. doi: 10.1055/s-0030-1250331 PubMedCrossRefGoogle Scholar
  153. Wu B, Li Y, Yan H et al (2012) Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genomics. doi: 10.1186/1471-2164-13-15 Google Scholar
  154. Wu Z, Gui S, Quan Z et al (2014a) A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots. BMC Plant Biol. doi: 10.1186/s12870-014-0289-0 Google Scholar
  155. Wu Z, Li X, Liu Z et al (2014b) De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biol. doi: 10.1186/s12870-014-0277-4 Google Scholar
  156. Wu G, Zhang L, Yin Y et al (2015) Sequencing, de novo assembly and comparative analysis of Raphanus sativus transcriptome. Front Plant Sci. doi: 10.3389/fpls.2015.00198 Google Scholar
  157. Xin M, Wang Y, Yao Y et al (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol. doi: 10.1186/1471-2229-11-61 Google Scholar
  158. Xu Z, Peters RJ, Weirather J et al (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82:951–961. doi: 10.1111/tpj.12865 PubMedCrossRefGoogle Scholar
  159. Yamazaki M, Mochida K, Asano T et al (2013) Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones. Plant Cell Physiol 54:686–696. doi: 10.1093/pcp/pct040 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Yang M, Zhang X, Liu G et al (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One. doi: 10.1371/journal.pone.0012762 Google Scholar
  161. Yang B, Yang H, Chen F et al (2013a) Phytochemical analyses of Ziziphus jujuba Mill. var. spinosa seed by ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Analyst 138:6881–6888. doi: 10.1039/c3an01478a PubMedCrossRefGoogle Scholar
  162. Yang L, Ding G, Lin H et al (2013b) Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS One. doi: 10.1371/journal.pone.0080464 Google Scholar
  163. Yang Y, Yuanye D, Qing L et al (2014) Complete chloroplast genome sequence of poisonous and medicinal plant Datura stramonium: organizations and implications for genetic engineering. PLoS One. doi: 10.1371/journal.pone.0110656 Google Scholar
  164. Yonekura-sakakibara K (2009) Functional genomics of family 1 glycosyltransferases in Arabidopsis. Plant Biotechnol 26:267–274CrossRefGoogle Scholar
  165. Yonekura-Sakakibara K, Fukushima A, Saito K (2013) Transcriptome data modeling for targeted plant metabolic engineering. Curr Opin Biotechnol 24:285–290. doi: 10.1016/j.copbio.2012.10.018 PubMedCrossRefGoogle Scholar
  166. Yuan Y, Song L, Li M et al (2012) Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC Genomics. doi: 10.1186/1471-2164-13-195 Google Scholar
  167. Yun Y, Yu J, Nam GH et al (2015) Next-generation sequencing identification and characterization of microsatellite markers in Aconitum austrokoreense Koidz., an endemic and endangered medicinal plant of Korea. Genet Mol Res 14:4812–4817PubMedCrossRefGoogle Scholar
  168. Zalapa JE, Cuevas H, Zhu H et al (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208. doi: 10.3732/ajb.1100394 PubMedCrossRefGoogle Scholar
  169. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isoloation: a review. Mol Ecol 11:1–16PubMedCrossRefGoogle Scholar
  170. Zhang GH, Ma CH, Zhang JJ et al (2015a) Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genomics. doi: 10.1186/s12864-015-1332-8 Google Scholar
  171. Zhang X, Luo H, Xu Z et al (2015b) Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 5:11244. doi: 10.1038/srep11244 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zhao Y, Yin J, Guo H et al (2015) The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Front Plant Sci. doi: 10.3389/fpls.2014.00696 Google Scholar
  173. Zheng XF, Chan TF (2002) Chemical genomics: a systematic approach in biological research and drug discovery. Curr Issues Mol Biol 4:33–43PubMedGoogle Scholar
  174. Zheng L, McMullen MD, Bauer E et al (2015) Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. J Exp Bot 66:3917–3930. doi: 10.1093/jxb/erv192 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zhu L, Zhang Y, Guo W et al (2014) De novo assembly and characterization of Sophora japonica transcriptome using RNA-seq. Biomed Res Int. doi: 10.1155/2014/750961 Google Scholar
  176. Zou Z, Ishida M, Li F (2013) QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. PLoS One. doi: 10.1371/journal.pone.0053541 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.B.V. Patel Pharmaceutical Education and Research Development (PERD) CentreAhmedabadIndia
  2. 2.Nirma UniversityAhmedabadIndia

Personalised recommendations