Skip to main content

Advertisement

Log in

Agatharesinol biosynthesis-related changes of ray parenchyma in sapwood sticks of Cryptomeria japonica during cell death

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The work demonstrates a relationship between the biosynthesis of the secondary metabolite, agatharesinol, and cytological changes that occur in ray parenchyma during cell death in sapwood sticks of Cryptomeria japonica under humidity-regulated conditions.

To characterize the death of ray parenchyma cells that accompanies the biosynthesis of secondary metabolites, we examined cell death in sapwood sticks of Cryptomeria japonica under humidity-regulated conditions. We monitored features of ray parenchyma cells, such as viability, the morphology of nuclei and vacuoles, and the amount of starch grains. In addition, we analyzed levels of agatharesinol, a heartwood norlignan, by gas chromatography–mass spectrometry in the same sapwood sticks. Dramatic changes in the amount of starch grains and in the level of agatharesinol occurred simultaneously. Therefore, the biosynthesis of agatharesinol appeared to originate from the breakdown of starch. Furthermore, we observed the expansion of vacuoles in ray parenchyma cells prior to other cytological changes at the final stage of cell death. In our experimental system, we were able to follow the process of cell death and to demonstrate relationships between cytological changes and the biosynthesis of a secondary metabolite during the death of ray parenchyma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-Diamidino-2-phenylindole

FDA:

Fluorescein diacetate

GC–MS:

Gas chromatography–mass spectrometry

I2/KI:

Iodine-potassium iodide

NR:

Neutral red

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

TEM:

Transmission electron microscopy

References

  • Bamber RK, Fukazawa K (1985) Sapwood and heartwood: a review. For Abstract 46:567–580

    Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2007) Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii × P. grandidentata). Ann Bot 100:439–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2010) Changes in the localization and levels of starch and lipids in cambium and phloem during cambial reactivation by artificial heating of main stems of Cryptomeria japonica trees. Ann Bot 106:885–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bito N, Nakada R, Fukatsu E, Matsushita Y, Fukushima K, Imai T (2011) Clonal variation in heartwood norlignans of Cryptomeria japonica: evidence for independent control of agatharesinol and sequirin C biosynthesis. Ann For Sci 68:1049–1056

    Article  Google Scholar 

  • Catesson AM (1990) Cambial cytology and biochemistry. In: Iqbal M (ed) The vascular cambium. Research Studies Press, Taunton, pp 63–112

    Google Scholar 

  • Chaffey N, Barlow P (2001) The cytoskeleton facilitates a three-dimensional symplastic continuum in the long-lived ray and axial parenchyma cells of angiosperm trees. Planta 213:811–823

    Article  CAS  PubMed  Google Scholar 

  • Dubrovsky JG, Guttenberger M, Saralegui A, Napsucialy-Mendivil S, Voigt B, Baluska F, Menzel D (2006) Neutral red as a probe for confocal laser scanning microscopy studies of plant roots. Ann Bot 97:1127–1138

    Article  PubMed  PubMed Central  Google Scholar 

  • Duchesne LC, Hubbes M, Jeng RS (1992) Biochemistry and molecular biology of defense reaction in the xylem of angiosperm trees. In: Blanchette RA, Biggs AR (eds) Defense mechanisms of woody plants against fungi. Springer, Berlin, pp 133–146

    Chapter  Google Scholar 

  • Ehara M, Noguchi T, Ueda K (1996) Uptake of neutral red by the vacuoles of a green alga, Micrasterias pinnatifida. Plant Cell Physiol 37:734–741

    Article  CAS  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Hatsugai N (2011) The role of vacuoles in plant cell death. Cell Death Differ 18:1298–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillis WE (1987) Heartwood and tree exudates. Springer, New York, pp 1–268

    Google Scholar 

  • Höll W (2000) Distribution, fluctuation and metabolism of food reserves in the wood of trees. In: Savidge R, Barnett J, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 347–362

    Google Scholar 

  • Imai T, Nomura M (2005) Induction of the biosynthesis of agatharesinol, a norlignan, in sapwood sticks of Cryptomeria japonica under humidity-regulated circumstances. J Wood Sci 51:537–541

    Article  CAS  Google Scholar 

  • Imai T, Nomura M, Fukushima K (2006a) Evidence for involvement of the phenylpropanoid pathway in the biosynthesis of the norlignan agatharesinol. J Plant Physiol 163:483–487

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Nomura M, Matsushita Y, Fukushima K (2006b) Hinokiresinol is not a precursor of agatharesinol in the norlignan biosynthetic pathway in Japanese cedar. J Plant Physiol 163:1221–1228

    Article  CAS  PubMed  Google Scholar 

  • Jones KH, Senft JA (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem 33:77–79

    Article  CAS  PubMed  Google Scholar 

  • Kariya K, Demiral T, Sasaki T, Tsuchiya Y, Turkan I, Sano T, Hasezawa S, Yamamoto Y (2013) A novel mechanism of aluminum-induced cell death involving vacuolar processing enzyme and vacuolar collapse in tobacco cell line BY-2. J Inorg Biochem 128:196–201

    Article  CAS  PubMed  Google Scholar 

  • Kemp MS, Burden RS (1986) Phytoalexins and stress metabolites in the sapwood of trees. Phytochemistry 25:1261–1269

    Article  CAS  Google Scholar 

  • Kuriyama H, Fukuda H (2002) Developmental programmed cell death in plants. Curr Opin Plant Biol 5:568–573

    Article  CAS  PubMed  Google Scholar 

  • Magel EA (2000) Biochemistry and physiology of heartwood formation. In: Savidge R, Barnett J, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 363–376

    Google Scholar 

  • Magel EA, Hillinger C, Höll W, Ziegler H (1997) Biochemistry and physiology of heartwood formation: role of reserve substances. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees—contributions to modern tree physiology. SFB Academic Publisher, The Hague, pp 477–506

    Google Scholar 

  • Morel A, Teyssier C, Trontin JF, Eliášová K, Pešek B, Beaufour M, Morabito D, Boizot N, Le Metté C, Belal-Bessai L, Reymond I, Harvengt L, Cadene M, Corbineau F, Vágner M, Label P, Lelu-Walter MA (2014) Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. Physiol Plant 152:184–201

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Funada R, Sano Y, Ohtani J (1999) The differentiation of contact cells and isolation cells in the xylem ray parenchyma of Populus maximowiczii. Ann Bot 84:429–435

    Article  Google Scholar 

  • Nakaba S, Sano Y, Kubo T, Funada R (2006) The positional distribution of cell death of ray parenchyma in a conifer, Abies sachalinensis. Plant Cell Rep 25:1143–1148

    Article  CAS  PubMed  Google Scholar 

  • Nakaba S, Kubo T, Funada R (2008a) Differences in patterns of cell death between ray parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida. Trees 22:623–630

    Article  Google Scholar 

  • Nakaba S, Yoshimoto J, Kubo T, Funada R (2008b) Morphological changes in the cytoskeleton, nuclei, and vacuoles during cell death of short-lived ray tracheids in the conifer Pinus densiflora. J Wood Sci 54:509–514

    Article  CAS  Google Scholar 

  • Nakaba S, Begum S, Yamagishi Y, Jin HO, Kubo T, Funada R (2012) Differences in the timing of cell death, differentiation and function among three different types of ray parenchyma cells in the hardwood Populus sieboldii × P. grandidentata. Trees 26:743–750

    Article  Google Scholar 

  • Nakaba S, Sano Y, Funada R (2013) Disappearance of microtubules, nuclei and starch during cell death of ray parenchyma in Abies sachalinensis. IAWA J 34:135–146

    Article  Google Scholar 

  • Nakaba S, Takata N, Yoshida M, Funada R (2015a) Continuous expression of genes for xylem cysteine peptidases in long-lived ray parenchyma cells in Populus. Plant Biotechnol 32:21–29

    Article  CAS  Google Scholar 

  • Nakaba S, Kitin P, Yamagishi Y, Begum S, Kudo K, Nugroho WD, Funada R (2015b) Three-dimensional imaging of cambium and secondary xylem cells by confocal laser scanning microscopy. In: Yeung ECT, Stasolla C, Sumner MJ, Huang BQ (eds) Plant microtechniques and protocols. Springer, Switzerland, pp 431–465

    Chapter  Google Scholar 

  • Nobuchi T, Harada H (1985) Ultrastructural changes in parenchyma cells of sugi (Cryptomeria japonica D. Don) associated with heartwood formation. Mokuzai Gakkaishi 31:965–973

    Google Scholar 

  • Nobuchi T, Kuroda K, Iwata R, Harada H (1982) Cytological study of the seasonal features of heartwood formation of sugi (Cryptomeria japonica D. Don). Mokuzai Gakkaishi 28:669–676

    Google Scholar 

  • Nobuchi T, Akamatsu Y, Sato K, Harada H (1986) Early response of ray parenchyma cells following wounding in sugi (Cryptomeria japonica D. Don) wood: seasonal changes of discoloration and cytological structure. Bull Kyoto Univ For 57:290–299

    Google Scholar 

  • Ohashi H, Imai T (1990) Characterization of physiological functions of sapwood: synthesis and accumulation of heartwood extractives in the withering process of immature Japanese cedar trunk. Holzforschung 44:317–323

    Article  CAS  Google Scholar 

  • Ohashi H, Imai T, Yoshida K, Yasue M (1990) Characterization of physiological functions of sapwood: fluctuation of extractives in the withering process of Japanese cedar sapwood. Holzforschung 44:79–86

    Article  CAS  Google Scholar 

  • Ohashi H, Kato N, Imai T, Kawai S (1991) Characterization of physiological functions of sapwood: fluctuation of heartwood extractives in the withering process of Japanese cedar sapwood fed an inhibitor of phenylalanine ammonia-lyase. Holzforschung 45:245–252

    Article  CAS  Google Scholar 

  • Rasband WS (1997–2015) ImageJ. US National Institutes of Health, Bethesda. http://rsb.info.nih.gov/ij/

  • Rotman BB, Papermaster BW (1966) Membrane properties of living mammalian cells as studied by hydrolysis of fluorogenic esters. Proc Nat Acad Sci USA 55:134–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter JJ (2000) Photosynthate allocation to the vascular cambium: fact and problem. In: Savidge R, Barnett J, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 71–83

    Google Scholar 

  • Shigo AL (1984) Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Annu Rev Phytopathol 22:189–214

    Article  Google Scholar 

  • Spicer R (2005) Senescence in secondary xylem: heartwood formation as an active developmental program. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier Academic Press, Amsterdam, pp 457–475

    Chapter  Google Scholar 

  • Spicer R (2014) Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. J Exp Bot 65:1829–1848

    Article  CAS  PubMed  Google Scholar 

  • Taylor A, Gartner BL, Morrell JJ (2002) Heartwood formation and natural durability—a review. Wood Fiber Sci 34:587–611

    CAS  Google Scholar 

  • van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LA, Petersen M, Smertenko A, Taliansky M, van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada T (2001) Defense mechanisms in the sapwood of living trees against microbial infection. J For Res 6:127–137

    Article  CAS  Google Scholar 

  • Yanase Y, Sakamoto K, Imai T (2015) Isolation and structural elucidation of norlignan polymers from the heartwood of Cryptomeria japonica. Holzforschung 69:281–296

    Article  CAS  Google Scholar 

  • Yoshida K, Nishiguchi M, Hishiyama S, Kato A, Takahashi K (2006) Generation and alteration of norlignans in a transition zone during the drying of a Cryptomeria japonica log. J Wood Sci 52:372–375

    Article  CAS  Google Scholar 

  • Yoshida K, Nihiguchi M, Futamura N, Nanjo T (2007) Expressed sequence tags from Cryptomeria japonica sapwood during the drying process. Tree Physiol 27:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Shinichi Sato (Forestry and Forest Products Research Institute, Forest Tree Breeding Center) for help in the collection of samples. This work was supported by Grants-in-Aid from the Japan Society for the Promotion of Science (Nos. 23380105, 24380090, 25850121, 15H04527 and 15K07508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Nakaba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakaba, S., Arakawa, I., Morimoto, H. et al. Agatharesinol biosynthesis-related changes of ray parenchyma in sapwood sticks of Cryptomeria japonica during cell death. Planta 243, 1225–1236 (2016). https://doi.org/10.1007/s00425-016-2473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2473-y

Keywords

Navigation