The polyploidy and its key role in plant breeding

Abstract

Main conclusion

This article provides an up-to-date review concerning from basic issues of polyploidy to aspects regarding the relevance and role of both natural and artificial polyploids in plant breeding programs.

Polyploidy is a major force in the evolution of both wild and cultivated plants. Polyploid organisms often exhibit increased vigor and, in some cases, outperform their diploid relatives in several aspects. This remarkable superiority of polyploids has been the target of many plant breeders in the last century, who have induced polyploidy and/or used natural polyploids in many ways to obtain increasingly improved plant cultivars. Some of the most important consequences of polyploidy for plant breeding are the increment in plant organs (“gigas” effect), buffering of deleterious mutations, increased heterozygosity, and heterosis (hybrid vigor). Regarding such features as tools, cultivars have been generated with higher yield levels, improving the product quality and increasing the tolerance to both biotic and abiotic stresses. In some cases, when the crossing between two species is not possible because of differences in ploidy level, polyploids can be used as a bridge for gene transferring between them. In addition, polyploidy often results in reduced fertility due to meiotic errors, allowing the production of seedless varieties. On the other hand, the genome doubling in a newly formed sterile hybrid allows the restoration of its fertility. Based on these aspects, the present review initially concerns the origin, frequency and classification of the polyploids, progressing to show the revolution promoted by the discovery of natural polyploids and polyploidization induction in the breeding program status of distinct crops.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141. doi:10.1016/j.pbi.2005.01.001

    CAS  PubMed  Article  Google Scholar 

  2. Ammar K, Mergoun M, Rajaram S (2004) The history and evolution of triticale. In: Mergoum M, Gómez-Macpherson H (eds) Triticale improvement and production. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  3. Anonymous (1990) Perennial ryegrass (Lolium perenne × multiflorum). Variety: ‘Grasslands Greenstone’. Application no. 90/080. Plant Varieties J 3:20–22

    Google Scholar 

  4. Ansari N, Thomas H (1983) A study of homoeologous relationships in the cultivated oat Avena sativa (2n = 6x = 42). Theor Appl Genet 66:303–305. doi:10.1007/BF00251164

    CAS  PubMed  Google Scholar 

  5. Armstrong CS (1981) ‘Grasslands Moata’ tetraploid Italian ryegrass (Lolium multiflorum Lam.). New Zeal J Exp Agr 9:337–341. doi:10.1080/03015521.1981.10425431

    Article  Google Scholar 

  6. Arnau G, Nemorin A, Maledon E, Abraham K (2009) Revision of ploidy status of Discorea alata L. (Discoreaceae) by cytogenetic and microsatellite segregation analysis. Theor Appl Genet 118:1239–1249. doi:10.1007/s00122-009-0977-6

    CAS  PubMed  Article  Google Scholar 

  7. Baier AC, Nedel JL, Reis EM, Wiethölter S (1994) Triticale: cultivo e aproveitamento. EMBRAPA-CNPT

  8. Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568. doi:10.1046/j.1365-294x.2001.01216.x

    CAS  PubMed  Article  Google Scholar 

  9. Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in Angiosperms. Ann Bot 76:113–176. doi:10.1006/anbo.1995.1085

    CAS  Article  Google Scholar 

  10. Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J Hered 28:393–411

    CAS  Google Scholar 

  11. Boller B, Schubiger FX, Kölliker (2012) Red clover. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses. Springer-Verlag, New York, pp 439–455

    Google Scholar 

  12. Boyhan GE, Granberry DM, Kelley WT (2000) Commercial watermelon production. Bulletin 996. Cooperative Extension Services. University of Georgia. http://extension.uga.edu/publications/files/pdf/B%20996_3.PDF. Accessed 23 April 2015

  13. Bretagnolle FA, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22. doi:10.1111/j.1469-8137.1995.tb03005.x

    Article  Google Scholar 

  14. Buckner RC, Hill HD, Burrus PB Jr (1961) Some characteristics of perennial and annual ryegrass × tall fescue hybrids and of the amphiploid progenies of annual ryegrass × tall fescue. Crop Sci 3:75–80

    Article  Google Scholar 

  15. Burk LG (1967) An interspecific bridge-cross Nicotiana repanda through N. sylvestris to N. tabacum. J Hered 58:215–218

    Google Scholar 

  16. Carputo D, Frusciante L, Peloquin SJ (2003) The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing solanums. Genetics 163:287–294

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Chauvin JE, Label A, Kermarrec MP (2006) In vitro chromosome-doubling in tulip (Tulipa gesneriana L.). J Hortic Sci Biotech 80:693–698

    Google Scholar 

  18. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–72. doi:10.1016/j.tplants.2009.12.003

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  19. Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Dhaliwal HS (2007) Introgression of leaf rust and stripe rust resistance genes from Aegilops umbellulata to hexaploid wheat through induced homoeologous pairing. In: Buck HT, Nisi JE, Salomón N (eds) Wheat production in stressed environments. Springer, Netherlands, pp 83–90

    Google Scholar 

  20. Clarindo WR, Carvalho CR (2008) First Coffea arabica karyogram showing that this species is a true allotetraploid. Plant Syst Evol 274:237–241. doi:10.1007/s00606-008-0050-y

    Article  Google Scholar 

  21. Comai L (2005) The advantages and disadvantages of being polyploid. Nature 6:836–846. doi:10.1038/nrg1711

    CAS  Google Scholar 

  22. Contreras RN, Ruter JM (2009) An oryzalin-induced autoallooctoploid of Hibiscus acetosella ‘Panama Red’. J Amer Soc Hort Sci 134:553–559

    Google Scholar 

  23. Crow JF (1994) Hitoshi Kihara, Japan’s pioneer geneticist. Genetics 137:891–894

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Dabholkar AR (2006) General plant breeding. Concept Publishing Company, New Delhi

    Google Scholar 

  25. Dantas JLL, Shephred K, Silva SO, Filho WSS (1999) Classificação botânica, origem, evolução e distribuição geográfica. In: Alves EJ (ed) A cultura da banana: aspectos técnicos, socioeconômicos e agroindustriais, 2nd edn. Embrapa, Brasília, pp 27–34

    Google Scholar 

  26. Das M (2015) Chamomile: medicinal, biochemical, and agricultural aspects. CRC Press, New York

    Google Scholar 

  27. Dermen H (1954) Colchiploidy in grapes. J Hered 45:159–172

    Google Scholar 

  28. Dewey DR (1980) Some applications and misapplications of induced polyploidy to plant breeding. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 445–470

    Google Scholar 

  29. Dewitte A, Van Laere K, Van Huylenbroeck J (2012) Use of 2n gametes in plant breeding. In: Abdurakhmonov IY (ed) Plant breeding. InTech Open Access Publisher, Croatia, pp 59–86. doi:10.5772/29827

    Google Scholar 

  30. Dhawan OP, Lavania UC (1996) Enhancing the productivity of secondary metabolites via induced polyploidy: a review. Euphytica 87:81–89. doi:10.1007/BF00021879

    CAS  Article  Google Scholar 

  31. Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Org 104:359–373. doi:10.1007/s11240-010-9786-5

    Article  Google Scholar 

  32. Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim

    Google Scholar 

  33. Dorsey E (1936) Induced polyploidy in wheat and rye. J Hered 27:155–160

    Google Scholar 

  34. Eikelboom W, Straathof TP, Van Tuyl JM (2001) Tetraploide “Christmas marvel” methoden om tetraploide tulpen te verkrijgen. Bloembollencultuur 112:22–23

    Google Scholar 

  35. Elyazid DMA, El-Shereif AR (2014) In vitro induction of polyploidy in Citrus reticulada Blanco. Am J Plant Sci 5:1679–1685. doi:10.4236/ajps.2014.511182

    Article  CAS  Google Scholar 

  36. Evans AM (1955) The production and identification of polyploids in red clover, white clover and lucerne. New Phytol 54:149–162

    Article  Google Scholar 

  37. Fatokun CA (2002) Breeding cowpea for resistance to insect and pests: attempted crosses between cowpea and Vigna vexillata. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamó M (eds) Challenges and opportunities for enhancing sustainable cowpea production. IITA, Ibadan, pp 52–61

    Google Scholar 

  38. Fawcett JA, Maere S, Peer YV (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742. doi:10.1073/pnas.0900906106

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  39. Gosztola B, Nemeth E, Sarosi SZ, Szabo K, Kozak A (2006) Comparative evaluation of chamomile (Matricaria recutita L.) populations from different origin. Int J Horticult Sci 12:91–95

    Google Scholar 

  40. Hagberg A, Ellerström S (1959) The competition between diploid, tetraploid and aneuploid rye: theoretical and practical aspects. Hereditas 45:369–416. doi:10.1111/j.1601-5223.1959.tb03058.x

    Article  Google Scholar 

  41. Haider N (2013) The origin of the B-genome of bread wheat (Triticum aestivum L.). Russ J Genet 49:263–274. doi:10.1134/S1022795413030071

    CAS  Article  Google Scholar 

  42. Hancock JF (1997) The colchicine story. HortScience 32:1011–1012

    Google Scholar 

  43. Hancock NI, Overton JR (1960) Behavior and adaptation of Balbo and Tetra Petkus rye. University of Tennessee Agricultural Experiment Station. Bulletin 307

  44. Harlan JR, de Wet JMJ (1975) On Ö Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390

    Article  Google Scholar 

  45. Hay RJM, Kelly RW, Ryan DL (1978) Some aspects of the performance of ‘Grasslands Pawera’ red clover in Southland. Proc N Z Grassland Assoc 38:246–252

    CAS  Google Scholar 

  46. Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ (2008) Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Phil Trans R Soc B 363:3055–3069. doi:10.1098/rstb.2008.0080

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  47. Hopping ME (1994) Flow cytometric analysis of Actinidia species. New Zeal J Bot 32:85–93. doi:10.1080/0028825X.1994.10410410

    Article  Google Scholar 

  48. Jalil R, Khoshoo TN, Pal M (1974) Origin, nature and limit of polyploidy in marigolds. Curr Sci 43:777–779

    Google Scholar 

  49. Janick J, Cimmins JM, Brown SK, Hemmat M (1996) Apple. In: Janick J, Moore JN (eds) Fruit breed, Volume I: tree and tropical fruits. John Wiley & Sons, New York

    Google Scholar 

  50. Jaskani MJ, Kwon SW, Kim DH (2005) Comparative study on vegetative, reproductive and qualitative traits of seven diploid and tetraploid watermelon lines. Euphytica 145:259–268. doi:10.1007/s10681-005-1644-x

    CAS  Article  Google Scholar 

  51. Jiang CX, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  52. Jiao Y, Wickett NJ, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. doi:10.1038/nature09916

    CAS  PubMed  Article  Google Scholar 

  53. Jones JR, Ranney TG, Lynch NP, Krebs SL (2007) Ploidy levels and relative genome sizes of diverse species, hybrids, and cultivars of Rhododendron. J Am Rhododendron Soc 61:220–227

    Google Scholar 

  54. Kadota M, Niimi Y (2002) In vitro induction of tetraploid plants from a diploid Japanese pear cultivar (Pyrus pyrifolia N. cv. Hosui). Plant Cell Rep 21:282–286. doi:10.1007/s00299-002-0509-1

    CAS  Article  Google Scholar 

  55. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allopolyploid. Genetics 160:1651–1659

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Katepa-Mupondwa FM, Christie BR, Michaels TE (2002) An improved breeding strategy for autotetraploid alfalfa (Medicago sativa L.). Euphytica 123:139–146. doi:10.1023/A:1014488307000

    Article  Google Scholar 

  57. Kehr AE (1971) A tetraploid Rhododendron carolinianum. Am Rhod Soc Bull 25:4–7

    Google Scholar 

  58. Kinoshita T, Takahashi M (1969) Studies in polyploid varieties of sugar beets. XIV. Use of cytoplasmic male sterility in the production of triploid hybrids, and their performance in trials. J Fac Agric, Hokkaido Univ 56:171–186

    Google Scholar 

  59. Lee HS, Chen ZJ (2001) Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA 98:6753–6758. doi:10.1073/pnas.121064698

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  60. Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiniana (Solanaceae). Ann Bot 101:805–814. doi:10.1093/aob/mcm326

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  61. Levan A (1940) Meiosis of Allium porrum, a tetraploid species with chiasma localisation. Hereditas 26:454–462

    Article  Google Scholar 

  62. Levan A (1948) Nordisk polyploidiforadling hos Jordbruksvaxter. Nord JordbrForskn 30:468–490

    Google Scholar 

  63. Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  64. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, Oxford

    Google Scholar 

  65. Liu PL, Wan Q, Guo YP, Yang J, Rao GY (2012) Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7:1–13. doi:10.1371/journal.pone.0048970

    Google Scholar 

  66. Marasek-Ciolakowska AR, Ramanna MS, Arens P, Tuyl JV (2012) Breeding and cytogenetics in the genus Tulipa. Floricult Ornamental Biotech 6:90–97

    Google Scholar 

  67. Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423. doi:10.1126/science.264.5157.421

    CAS  PubMed  Article  Google Scholar 

  68. McNaughton (1973) Synthesis and sterility of Raphanobrassica. Euphytica 22:70–88. doi:10.1007/BF00021558

    Article  Google Scholar 

  69. Mendoza HA, Haynes FL (1974) Genetic basis of heterosis for yield in the autotetraploid potato. Theor Appl Genet 45:21–25

    CAS  PubMed  Article  Google Scholar 

  70. Mergoum M, Gómez-Macpherson H (2004) Triticale improvement and production. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  71. Mertten D, Tsang GK, Manako KI, McNeilage MA, Datson PM (2012) Meiotic chromosome pairing in Actinicia chinensis var. deliciosa. Genetica 140:455–462. doi:10.1007/s10709-012-9693-2

    CAS  PubMed  Article  Google Scholar 

  72. Moody ME, Mueller LD, Soltis DE (1993) Genetic variation and random drift in autotetraploid populations. Genetics 134:649–657

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Morinaga K (2001) Grape production in Japan. In: Papademetriou MK, Dent FJ (eds) Grape production in the Asia-Pacific region. FAO, Thailand, pp 38–52

    Google Scholar 

  74. Morton J (1987) Tahiti Lime. In: Morton JF (ed) Fruits of warm climates. Southern Book Service, Miami

    Google Scholar 

  75. Motosugi H, Okudo K, Kataoka D, Naruo T (2002) Comparison of growth characteristics between diploid and colchicine-induced tetraploid grape rootstocks. J Jpn Soc Hortic Sci 71:335–341

    Article  Google Scholar 

  76. Mulvey RR (1958) Tetra Petkus Rye. Historical Documents of the Purdue Cooperative Extension Service, Paper 359

  77. Müntzing A (1951) Cyto-genetic properties and practical value of tetraploid rye. Hereditas 37:17–84

    Article  Google Scholar 

  78. Murashige T, Nakano R (1966) Tissue culture as a potential tool in obtaining polyploid plants. J Hered 57:114–118

    Google Scholar 

  79. Myers WM (1939) Colchicine induced tetraploidy in perennial ryegrass. J Hered 30:499–504

    Google Scholar 

  80. Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 7:389–452

    Google Scholar 

  81. Nair RM (2004) Developing tetraploid perennial ryegrass (Lolium perenne L.) populations. New Zeal J Agr Res 47:45–49. doi:10.1080/00288233.2004.9513569

    Article  Google Scholar 

  82. Notsuka K, Tsuru T, Shiraishi M (2000) Induced polyploid grapes via in vitro chromosome doubling. J Jpn Soc Hortic Sci 69:543–551. doi:10.2503/jjshs.69.543

    CAS  Article  Google Scholar 

  83. OECD (2008) Safety assessment of transgenic organisms: OECD consensus documents vols 1 and 2. OECD Publishing

  84. Olsen RT, Ranney TG, Viloria Z (2006) Reproductive behavior of induced allotetraploid × Chitalpa and in vitro embryo culture of polyploid progeny. J Am Soc Hortic Sci 131:716–724

    Google Scholar 

  85. Osborn TC, Pires JC, Birchler JA et al (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147. doi:10.1016/S0168-9525(03)00015-5

    CAS  PubMed  Article  Google Scholar 

  86. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437. doi:10.1146/annurev.genet.34.1.401

    CAS  PubMed  Article  Google Scholar 

  87. Park SM, Wakana A, Kim JH, Jeong CS (2002) Male and female fertility in triploid grapes (Vitis complex) with special reference to the production of aneuploid plants. Vitis 41:11–20

    Google Scholar 

  88. Parris JK, Ranney TG, Knap HT, Baird WV (2010) Ploidy levels, relative genome sizes, and base pair composition in magnolia. J Am Soc Hort Sci 135:533–547

    Google Scholar 

  89. Paterson AH (2005) Polyploidy, evolutionary opportunity, and crop adaptation. Genetica 123:191–196. doi:10.1007/s10709-003-2742-0

    CAS  PubMed  Article  Google Scholar 

  90. Pauly A, Pareyt B, Fierens E, Delcour JA (2013) Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) kernel hardness: II. Implications for end-product quality and role of puroindolines therein. Compr Rev Food Sci F 12:427–438. doi:10.1111/1541-4337.12018

    CAS  Article  Google Scholar 

  91. Peloquin SJ, Boiteux LS, Carputo D (1999) Meiotic mutants in potato: valuable variants. Genetics 153:1493–1499

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Peña RJ (2004) Food uses of triticale. In: Mergoum M, Gómez-Macpherson H (eds) Triticale improvement and production. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  93. Planchais S, Glab N, Inzé D, Bergonioux C (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83. doi:10.1016/S0014-5793(00)01675-6

    CAS  PubMed  Article  Google Scholar 

  94. Poehlman JM (1987) Reproduction in crop plants. In: Breeding field crops. Springer, Netherlands, pp 16–37. doi: 10.1007/978-94-015-7271-2

  95. Premachandran MN, Prathima PT, Lekshmi M (2013) Sugarcane and polyploidy: a review. J Sugarcane Res 1:1–15

    Google Scholar 

  96. Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivates (A. hypogaea) and related wild (A. monticola) peanut species. Plant Syst Evol 214:251–262. doi:10.1007/BF00985743

    Article  Google Scholar 

  97. Ram M (2014) Polyploidy and distant hybridization in plant breeding. In: Ram M (ed) Plant breeding methods. PHI Learning Pvt Ltd., New Delhi, pp 423–445

    Google Scholar 

  98. Ramanna MS, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement: a review. Euphytica 133:3–8. doi:10.1023/A:1025600824483

    Article  Google Scholar 

  99. Ramsey J, Ramsey TS (2014) Ecological studies of polyploidy in the 100 years following its discovery. Phil Trans R Soc B 369:1–20. doi:10.1098/rstb.2013.0352

    Article  Google Scholar 

  100. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Evol Syst 29:467–501. doi:10.1146/annurev.ecolsys.29.1.467

    Article  Google Scholar 

  101. Randolph LF (1932) Some effects of high temperature on polyploidy and other variations in maize. Proc Natl Acad Sci USA 18:222–229

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  102. Randolph LF (1942) The influence of heterozygosis on fertility and vigor in autotetraploid maize. Genetics 27:163

    Google Scholar 

  103. Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. Am J Bot 101:1–15. doi:10.3732/ajb.1400119

    Article  Google Scholar 

  104. Roullier C, Duputié A, Wennekes P et al (2013) Disentangling the origins of cultivated sweet potato (Ipomoea batatas (L.) Lam.). PLoS ONE 8:1–12. doi:10.1371/journal.pone.0062707

    Article  Google Scholar 

  105. Roy AT, Leggett G, Koutoulis A (2001) In vitro tetraploid induction and generation of tetraploids from mixoploids in hop (Humulus lupulus L.). Plant Cell Rep 20:489–495. doi:10.1007/s002990100364

    CAS  Article  Google Scholar 

  106. Sajjad YASAR, Jaskani MJ, Mehmood A, Ahmad I, Abbas HAIDER (2013) Effect of colchicine on in vitro polyploidy induction in African marigold (Tagetes erecta). Pak J Bot 45:1255–1258

    CAS  Google Scholar 

  107. Schifino-Wittman MT, Dall’Agnol M (2003) Indução de poliploidia no melhoramento de plantas. Pesq Agrop Gaúcha 9:155–164

    Google Scholar 

  108. Schlegel R (2006) Rye (Secale cereale L): a younger crop plant with a bright future. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement: cereals, vol 2. CRC Press, New York

    Google Scholar 

  109. Sedov EN (2014) Apple breeding programs and methods, their development and improvement. Russ J Genet 4:43–51. doi:10.1134/S2079059714010092

    Article  Google Scholar 

  110. Sedov EN, Sedysheva GA, Serova ZM, Gorbacheva NG, Melnik SA (2014) Breeding assessment of heteroploid crosses in the development of triploid apple varieties. Russ J Genet 4:52–59. doi:10.1134/S2079059714010109

    Article  Google Scholar 

  111. Silva PAKXM, Callegari-Jacques S, Bodanese-Zanettini MH (2000) Induction and identification of polyploids in Cattleya intermedia Lindl. (Orchidaceae) by in vitro techniques. Ciênc Rural 30:105–111. doi:10.1590/S0103-84782000000100017

    Article  Google Scholar 

  112. Silva SO, Junior MTS, Alves EJ, Silveira JRS, Lima MB (2001) Banana breeding program at Embrapa. Crop Breed Appl Biotechnol 1:399–436

    Article  Google Scholar 

  113. Simmonds NW (1980) Polyploidy in plant breeding. SPAN 23:73–75

    Google Scholar 

  114. Small E, Jomphe M (1989) A synopsis of the genus Medicago (Leguminosae). Can J Bot 67:3260–3294. doi:10.1139/b89-405

    Article  Google Scholar 

  115. Smulders MJ, Esselink GD, Everaert I, De Riek J, Vosman B (2010) Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers. BMC Genet 11:41–52. doi:10.1186/1471-2156-11-41

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  116. Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92:8089–8091

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  117. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352. doi:10.1016/S0169-5347(99)01638-9

    PubMed  Article  Google Scholar 

  118. Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057. doi:10.1073/pnas.97.13.7051

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  119. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588. doi:10.1146/annurev.arplant.043008.092039

    CAS  PubMed  Article  Google Scholar 

  120. Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since Plant speciation. New Phytol 161:173–191. doi:10.1046/j.1469-8137.2003.00948.x

    CAS  Article  Google Scholar 

  121. Soltis DE, Albert VA, Leebens-Mack J et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348. doi:10.3732/ajb.0800079

    PubMed  Article  Google Scholar 

  122. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  123. Speckmann GJ, Post J, Dijkstra H (1965) The length of stomata as an indicator for polyploidy in rye-grasses. Euphytica 14:225–230

    Article  Google Scholar 

  124. Sreekumari MT, Jos JS, Nair SG (1999) ‘Sree Harsha’: a superior triploid hybrid in cassava. Euphytica 106:1–6. doi:10.1023/A:1003473118487

    Article  Google Scholar 

  125. Stebbins GL (1947) Types of polyploids: their classification and significance. Adv Genet 1:403–429

    PubMed  Article  Google Scholar 

  126. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  127. Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, London

    Google Scholar 

  128. Stewart AV (2006) Genetic origins of perennial ryegrass (Lolium perenne) for New Zealand pastures. Grassland Res Pract Ser 12:55–62

    Google Scholar 

  129. Sybenga J (1992) Cytogenetics in plant breeding. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  130. Tayalé A, Parisod C (2013) Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 140:79–96. doi:10.1159/000351318

    PubMed  Article  Google Scholar 

  131. Taylor NL, Quesenberry KH (1996) Red clover science. Springer Science & Business Media, New York. doi:10.1007/978-94-015-8692-4

    Google Scholar 

  132. Tolety J, Sane A (2011) Antirrhinum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources plantation and ornamental crops. Springer-Verlag, New York, pp 1–14

    Google Scholar 

  133. Tran-Nguyen LTT, Condé BD, Smith SH, Ulyatt LI (2013) Outbreak of Fusarium wilt in seedless watermelon seedlings in the Northern Territory, Australia. Australas Plant Dis Notes 8:5–8. doi:10.1007/s13314-012-0053-y

    Article  Google Scholar 

  134. U.S. Department of Agriculture (2013) National watermelon report. USDA Agricultural Marketing Service. http://www.ams.usda.gov/mnreports/fvdtvmelon.pdf. Accessed 23 April 2015

  135. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732. doi:10.1038/nrg2600

    PubMed  Article  CAS  Google Scholar 

  136. Van Tuyl JM, Meijer B, Van Diën MP (1992) The use of oryzalin as an alternative for colchicine in in vitro chromosome doubling of Lilium and Nerine. In VI Int Symp Flower Bulbs 325:625–630

    Google Scholar 

  137. Whitaker VM (2011) Applications of molecular markers in strawberry. J Berry Res 1:115–127. doi:10.3233/BR-2011-013

    Google Scholar 

  138. White JA, Lemus R (2014) Long-term summary of ryegrass varieties and ploidy types in Mississippi. Am J Plant Sci 5:3151–3158. doi:10.4236/ajps.2014.521331

    Article  Google Scholar 

  139. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341. doi:10.1038/35072009

    CAS  PubMed  Article  Google Scholar 

  140. Wright GM (1983) Other cereals. In: Wratt GS, Smith HC (eds) Plant breeding in New Zealand. Butterworths of New Zealand, New Zealand, pp 41–56

    Google Scholar 

  141. Wu JH, Ferguson AR, Murray BG, Jia Y, Datson PM, Zhang J (2012) Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann Bot 109:169–179

    PubMed Central  PubMed  Article  Google Scholar 

  142. Yang XM, Cao ZY, An LZ, Wang YM, Frang XW (2006) In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica 152:217–224. doi:10.1007/s10681-006-9203-7

    Article  Google Scholar 

  143. Yang X, Ye CY, Cheng ZM et al (2011) Genomic aspects of research involving polyploid plants. Plant Cell Tiss Org 104:387–397. doi:10.1007/s11240-010-9826-1

    Article  Google Scholar 

  144. Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE (2000) Nuclear DNA amounts in roses. Ann Bot 85:557–561. doi:10.1006/anbo.1999.1102

    CAS  Article  Google Scholar 

  145. Zhou S, Zhou G, Li K (2011) Euploid endosperm of triploid × diploid/tetraploid crosses results in aneuploidy embryo survival in Lilium. HortScience 46:558–562

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil), Fundação de Amparo à Pesquisa do Espírito Santo (FAPES, Vitória, ES, Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, DF, Brazil) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wellington Ronildo Clarindo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sattler, M.C., Carvalho, C.R. & Clarindo, W.R. The polyploidy and its key role in plant breeding. Planta 243, 281–296 (2016). https://doi.org/10.1007/s00425-015-2450-x

Download citation

Keywords

  • Autopolyploidy
  • Allopolyploidy
  • Hybridization
  • Plant breeding
  • Heterosis
  • Hybrid bridge
  • “Gigas” effect