, Volume 243, Issue 2, pp 281–296 | Cite as

The polyploidy and its key role in plant breeding

  • Mariana Cansian Sattler
  • Carlos Roberto Carvalho
  • Wellington Ronildo ClarindoEmail author


Main conclusion

This article provides an up-to-date review concerning from basic issues of polyploidy to aspects regarding the relevance and role of both natural and artificial polyploids in plant breeding programs.

Polyploidy is a major force in the evolution of both wild and cultivated plants. Polyploid organisms often exhibit increased vigor and, in some cases, outperform their diploid relatives in several aspects. This remarkable superiority of polyploids has been the target of many plant breeders in the last century, who have induced polyploidy and/or used natural polyploids in many ways to obtain increasingly improved plant cultivars. Some of the most important consequences of polyploidy for plant breeding are the increment in plant organs (“gigas” effect), buffering of deleterious mutations, increased heterozygosity, and heterosis (hybrid vigor). Regarding such features as tools, cultivars have been generated with higher yield levels, improving the product quality and increasing the tolerance to both biotic and abiotic stresses. In some cases, when the crossing between two species is not possible because of differences in ploidy level, polyploids can be used as a bridge for gene transferring between them. In addition, polyploidy often results in reduced fertility due to meiotic errors, allowing the production of seedless varieties. On the other hand, the genome doubling in a newly formed sterile hybrid allows the restoration of its fertility. Based on these aspects, the present review initially concerns the origin, frequency and classification of the polyploids, progressing to show the revolution promoted by the discovery of natural polyploids and polyploidization induction in the breeding program status of distinct crops.


Autopolyploidy Allopolyploidy Hybridization Plant breeding Heterosis Hybrid bridge “Gigas” effect 



We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil), Fundação de Amparo à Pesquisa do Espírito Santo (FAPES, Vitória, ES, Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, DF, Brazil) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141. doi: 10.1016/j.pbi.2005.01.001 PubMedCrossRefGoogle Scholar
  2. Ammar K, Mergoun M, Rajaram S (2004) The history and evolution of triticale. In: Mergoum M, Gómez-Macpherson H (eds) Triticale improvement and production. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  3. Anonymous (1990) Perennial ryegrass (Lolium perenne × multiflorum). Variety: ‘Grasslands Greenstone’. Application no. 90/080. Plant Varieties J 3:20–22Google Scholar
  4. Ansari N, Thomas H (1983) A study of homoeologous relationships in the cultivated oat Avena sativa (2n = 6x = 42). Theor Appl Genet 66:303–305. doi: 10.1007/BF00251164 PubMedGoogle Scholar
  5. Armstrong CS (1981) ‘Grasslands Moata’ tetraploid Italian ryegrass (Lolium multiflorum Lam.). New Zeal J Exp Agr 9:337–341. doi: 10.1080/03015521.1981.10425431 CrossRefGoogle Scholar
  6. Arnau G, Nemorin A, Maledon E, Abraham K (2009) Revision of ploidy status of Discorea alata L. (Discoreaceae) by cytogenetic and microsatellite segregation analysis. Theor Appl Genet 118:1239–1249. doi: 10.1007/s00122-009-0977-6 PubMedCrossRefGoogle Scholar
  7. Baier AC, Nedel JL, Reis EM, Wiethölter S (1994) Triticale: cultivo e aproveitamento. EMBRAPA-CNPTGoogle Scholar
  8. Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568. doi: 10.1046/j.1365-294x.2001.01216.x PubMedCrossRefGoogle Scholar
  9. Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in Angiosperms. Ann Bot 76:113–176. doi: 10.1006/anbo.1995.1085 CrossRefGoogle Scholar
  10. Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J Hered 28:393–411Google Scholar
  11. Boller B, Schubiger FX, Kölliker (2012) Red clover. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses. Springer-Verlag, New York, pp 439–455Google Scholar
  12. Boyhan GE, Granberry DM, Kelley WT (2000) Commercial watermelon production. Bulletin 996. Cooperative Extension Services. University of Georgia. Accessed 23 April 2015
  13. Bretagnolle FA, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22. doi: 10.1111/j.1469-8137.1995.tb03005.x CrossRefGoogle Scholar
  14. Buckner RC, Hill HD, Burrus PB Jr (1961) Some characteristics of perennial and annual ryegrass × tall fescue hybrids and of the amphiploid progenies of annual ryegrass × tall fescue. Crop Sci 3:75–80CrossRefGoogle Scholar
  15. Burk LG (1967) An interspecific bridge-cross Nicotiana repanda through N. sylvestris to N. tabacum. J Hered 58:215–218Google Scholar
  16. Carputo D, Frusciante L, Peloquin SJ (2003) The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing solanums. Genetics 163:287–294PubMedCentralPubMedGoogle Scholar
  17. Chauvin JE, Label A, Kermarrec MP (2006) In vitro chromosome-doubling in tulip (Tulipa gesneriana L.). J Hortic Sci Biotech 80:693–698Google Scholar
  18. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–72. doi: 10.1016/j.tplants.2009.12.003 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Dhaliwal HS (2007) Introgression of leaf rust and stripe rust resistance genes from Aegilops umbellulata to hexaploid wheat through induced homoeologous pairing. In: Buck HT, Nisi JE, Salomón N (eds) Wheat production in stressed environments. Springer, Netherlands, pp 83–90CrossRefGoogle Scholar
  20. Clarindo WR, Carvalho CR (2008) First Coffea arabica karyogram showing that this species is a true allotetraploid. Plant Syst Evol 274:237–241. doi: 10.1007/s00606-008-0050-y CrossRefGoogle Scholar
  21. Comai L (2005) The advantages and disadvantages of being polyploid. Nature 6:836–846. doi: 10.1038/nrg1711 Google Scholar
  22. Contreras RN, Ruter JM (2009) An oryzalin-induced autoallooctoploid of Hibiscus acetosella ‘Panama Red’. J Amer Soc Hort Sci 134:553–559Google Scholar
  23. Crow JF (1994) Hitoshi Kihara, Japan’s pioneer geneticist. Genetics 137:891–894PubMedCentralPubMedGoogle Scholar
  24. Dabholkar AR (2006) General plant breeding. Concept Publishing Company, New DelhiGoogle Scholar
  25. Dantas JLL, Shephred K, Silva SO, Filho WSS (1999) Classificação botânica, origem, evolução e distribuição geográfica. In: Alves EJ (ed) A cultura da banana: aspectos técnicos, socioeconômicos e agroindustriais, 2nd edn. Embrapa, Brasília, pp 27–34Google Scholar
  26. Das M (2015) Chamomile: medicinal, biochemical, and agricultural aspects. CRC Press, New YorkGoogle Scholar
  27. Dermen H (1954) Colchiploidy in grapes. J Hered 45:159–172Google Scholar
  28. Dewey DR (1980) Some applications and misapplications of induced polyploidy to plant breeding. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 445–470CrossRefGoogle Scholar
  29. Dewitte A, Van Laere K, Van Huylenbroeck J (2012) Use of 2n gametes in plant breeding. In: Abdurakhmonov IY (ed) Plant breeding. InTech Open Access Publisher, Croatia, pp 59–86. doi: 10.5772/29827 Google Scholar
  30. Dhawan OP, Lavania UC (1996) Enhancing the productivity of secondary metabolites via induced polyploidy: a review. Euphytica 87:81–89. doi: 10.1007/BF00021879 CrossRefGoogle Scholar
  31. Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Org 104:359–373. doi: 10.1007/s11240-010-9786-5 CrossRefGoogle Scholar
  32. Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  33. Dorsey E (1936) Induced polyploidy in wheat and rye. J Hered 27:155–160Google Scholar
  34. Eikelboom W, Straathof TP, Van Tuyl JM (2001) Tetraploide “Christmas marvel” methoden om tetraploide tulpen te verkrijgen. Bloembollencultuur 112:22–23Google Scholar
  35. Elyazid DMA, El-Shereif AR (2014) In vitro induction of polyploidy in Citrus reticulada Blanco. Am J Plant Sci 5:1679–1685. doi: 10.4236/ajps.2014.511182 CrossRefGoogle Scholar
  36. Evans AM (1955) The production and identification of polyploids in red clover, white clover and lucerne. New Phytol 54:149–162CrossRefGoogle Scholar
  37. Fatokun CA (2002) Breeding cowpea for resistance to insect and pests: attempted crosses between cowpea and Vigna vexillata. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamó M (eds) Challenges and opportunities for enhancing sustainable cowpea production. IITA, Ibadan, pp 52–61Google Scholar
  38. Fawcett JA, Maere S, Peer YV (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742. doi: 10.1073/pnas.0900906106 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Gosztola B, Nemeth E, Sarosi SZ, Szabo K, Kozak A (2006) Comparative evaluation of chamomile (Matricaria recutita L.) populations from different origin. Int J Horticult Sci 12:91–95Google Scholar
  40. Hagberg A, Ellerström S (1959) The competition between diploid, tetraploid and aneuploid rye: theoretical and practical aspects. Hereditas 45:369–416. doi: 10.1111/j.1601-5223.1959.tb03058.x CrossRefGoogle Scholar
  41. Haider N (2013) The origin of the B-genome of bread wheat (Triticum aestivum L.). Russ J Genet 49:263–274. doi: 10.1134/S1022795413030071 CrossRefGoogle Scholar
  42. Hancock JF (1997) The colchicine story. HortScience 32:1011–1012Google Scholar
  43. Hancock NI, Overton JR (1960) Behavior and adaptation of Balbo and Tetra Petkus rye. University of Tennessee Agricultural Experiment Station. Bulletin 307Google Scholar
  44. Harlan JR, de Wet JMJ (1975) On Ö Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390CrossRefGoogle Scholar
  45. Hay RJM, Kelly RW, Ryan DL (1978) Some aspects of the performance of ‘Grasslands Pawera’ red clover in Southland. Proc N Z Grassland Assoc 38:246–252Google Scholar
  46. Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ (2008) Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Phil Trans R Soc B 363:3055–3069. doi: 10.1098/rstb.2008.0080 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Hopping ME (1994) Flow cytometric analysis of Actinidia species. New Zeal J Bot 32:85–93. doi: 10.1080/0028825X.1994.10410410 CrossRefGoogle Scholar
  48. Jalil R, Khoshoo TN, Pal M (1974) Origin, nature and limit of polyploidy in marigolds. Curr Sci 43:777–779Google Scholar
  49. Janick J, Cimmins JM, Brown SK, Hemmat M (1996) Apple. In: Janick J, Moore JN (eds) Fruit breed, Volume I: tree and tropical fruits. John Wiley & Sons, New YorkGoogle Scholar
  50. Jaskani MJ, Kwon SW, Kim DH (2005) Comparative study on vegetative, reproductive and qualitative traits of seven diploid and tetraploid watermelon lines. Euphytica 145:259–268. doi: 10.1007/s10681-005-1644-x CrossRefGoogle Scholar
  51. Jiang CX, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424PubMedCentralPubMedCrossRefGoogle Scholar
  52. Jiao Y, Wickett NJ, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. doi: 10.1038/nature09916 PubMedCrossRefGoogle Scholar
  53. Jones JR, Ranney TG, Lynch NP, Krebs SL (2007) Ploidy levels and relative genome sizes of diverse species, hybrids, and cultivars of Rhododendron. J Am Rhododendron Soc 61:220–227Google Scholar
  54. Kadota M, Niimi Y (2002) In vitro induction of tetraploid plants from a diploid Japanese pear cultivar (Pyrus pyrifolia N. cv. Hosui). Plant Cell Rep 21:282–286. doi: 10.1007/s00299-002-0509-1 CrossRefGoogle Scholar
  55. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allopolyploid. Genetics 160:1651–1659PubMedCentralPubMedGoogle Scholar
  56. Katepa-Mupondwa FM, Christie BR, Michaels TE (2002) An improved breeding strategy for autotetraploid alfalfa (Medicago sativa L.). Euphytica 123:139–146. doi: 10.1023/A:1014488307000 CrossRefGoogle Scholar
  57. Kehr AE (1971) A tetraploid Rhododendron carolinianum. Am Rhod Soc Bull 25:4–7Google Scholar
  58. Kinoshita T, Takahashi M (1969) Studies in polyploid varieties of sugar beets. XIV. Use of cytoplasmic male sterility in the production of triploid hybrids, and their performance in trials. J Fac Agric, Hokkaido Univ 56:171–186Google Scholar
  59. Lee HS, Chen ZJ (2001) Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA 98:6753–6758. doi: 10.1073/pnas.121064698 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiniana (Solanaceae). Ann Bot 101:805–814. doi: 10.1093/aob/mcm326 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Levan A (1940) Meiosis of Allium porrum, a tetraploid species with chiasma localisation. Hereditas 26:454–462CrossRefGoogle Scholar
  62. Levan A (1948) Nordisk polyploidiforadling hos Jordbruksvaxter. Nord JordbrForskn 30:468–490Google Scholar
  63. Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25CrossRefGoogle Scholar
  64. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, OxfordGoogle Scholar
  65. Liu PL, Wan Q, Guo YP, Yang J, Rao GY (2012) Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7:1–13. doi: 10.1371/journal.pone.0048970 Google Scholar
  66. Marasek-Ciolakowska AR, Ramanna MS, Arens P, Tuyl JV (2012) Breeding and cytogenetics in the genus Tulipa. Floricult Ornamental Biotech 6:90–97Google Scholar
  67. Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423. doi: 10.1126/science.264.5157.421 PubMedCrossRefGoogle Scholar
  68. McNaughton (1973) Synthesis and sterility of Raphanobrassica. Euphytica 22:70–88. doi: 10.1007/BF00021558 CrossRefGoogle Scholar
  69. Mendoza HA, Haynes FL (1974) Genetic basis of heterosis for yield in the autotetraploid potato. Theor Appl Genet 45:21–25PubMedCrossRefGoogle Scholar
  70. Mergoum M, Gómez-Macpherson H (2004) Triticale improvement and production. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  71. Mertten D, Tsang GK, Manako KI, McNeilage MA, Datson PM (2012) Meiotic chromosome pairing in Actinicia chinensis var. deliciosa. Genetica 140:455–462. doi: 10.1007/s10709-012-9693-2 PubMedCrossRefGoogle Scholar
  72. Moody ME, Mueller LD, Soltis DE (1993) Genetic variation and random drift in autotetraploid populations. Genetics 134:649–657PubMedCentralPubMedGoogle Scholar
  73. Morinaga K (2001) Grape production in Japan. In: Papademetriou MK, Dent FJ (eds) Grape production in the Asia-Pacific region. FAO, Thailand, pp 38–52Google Scholar
  74. Morton J (1987) Tahiti Lime. In: Morton JF (ed) Fruits of warm climates. Southern Book Service, MiamiGoogle Scholar
  75. Motosugi H, Okudo K, Kataoka D, Naruo T (2002) Comparison of growth characteristics between diploid and colchicine-induced tetraploid grape rootstocks. J Jpn Soc Hortic Sci 71:335–341CrossRefGoogle Scholar
  76. Mulvey RR (1958) Tetra Petkus Rye. Historical Documents of the Purdue Cooperative Extension Service, Paper 359Google Scholar
  77. Müntzing A (1951) Cyto-genetic properties and practical value of tetraploid rye. Hereditas 37:17–84CrossRefGoogle Scholar
  78. Murashige T, Nakano R (1966) Tissue culture as a potential tool in obtaining polyploid plants. J Hered 57:114–118Google Scholar
  79. Myers WM (1939) Colchicine induced tetraploidy in perennial ryegrass. J Hered 30:499–504Google Scholar
  80. Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 7:389–452Google Scholar
  81. Nair RM (2004) Developing tetraploid perennial ryegrass (Lolium perenne L.) populations. New Zeal J Agr Res 47:45–49. doi: 10.1080/00288233.2004.9513569 CrossRefGoogle Scholar
  82. Notsuka K, Tsuru T, Shiraishi M (2000) Induced polyploid grapes via in vitro chromosome doubling. J Jpn Soc Hortic Sci 69:543–551. doi: 10.2503/jjshs.69.543 CrossRefGoogle Scholar
  83. OECD (2008) Safety assessment of transgenic organisms: OECD consensus documents vols 1 and 2. OECD PublishingGoogle Scholar
  84. Olsen RT, Ranney TG, Viloria Z (2006) Reproductive behavior of induced allotetraploid × Chitalpa and in vitro embryo culture of polyploid progeny. J Am Soc Hortic Sci 131:716–724Google Scholar
  85. Osborn TC, Pires JC, Birchler JA et al (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147. doi: 10.1016/S0168-9525(03)00015-5 PubMedCrossRefGoogle Scholar
  86. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437. doi: 10.1146/annurev.genet.34.1.401 PubMedCrossRefGoogle Scholar
  87. Park SM, Wakana A, Kim JH, Jeong CS (2002) Male and female fertility in triploid grapes (Vitis complex) with special reference to the production of aneuploid plants. Vitis 41:11–20Google Scholar
  88. Parris JK, Ranney TG, Knap HT, Baird WV (2010) Ploidy levels, relative genome sizes, and base pair composition in magnolia. J Am Soc Hort Sci 135:533–547Google Scholar
  89. Paterson AH (2005) Polyploidy, evolutionary opportunity, and crop adaptation. Genetica 123:191–196. doi: 10.1007/s10709-003-2742-0 PubMedCrossRefGoogle Scholar
  90. Pauly A, Pareyt B, Fierens E, Delcour JA (2013) Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) kernel hardness: II. Implications for end-product quality and role of puroindolines therein. Compr Rev Food Sci F 12:427–438. doi: 10.1111/1541-4337.12018 CrossRefGoogle Scholar
  91. Peloquin SJ, Boiteux LS, Carputo D (1999) Meiotic mutants in potato: valuable variants. Genetics 153:1493–1499PubMedCentralPubMedGoogle Scholar
  92. Peña RJ (2004) Food uses of triticale. In: Mergoum M, Gómez-Macpherson H (eds) Triticale improvement and production. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  93. Planchais S, Glab N, Inzé D, Bergonioux C (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83. doi: 10.1016/S0014-5793(00)01675-6 PubMedCrossRefGoogle Scholar
  94. Poehlman JM (1987) Reproduction in crop plants. In: Breeding field crops. Springer, Netherlands, pp 16–37. doi:  10.1007/978-94-015-7271-2
  95. Premachandran MN, Prathima PT, Lekshmi M (2013) Sugarcane and polyploidy: a review. J Sugarcane Res 1:1–15Google Scholar
  96. Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivates (A. hypogaea) and related wild (A. monticola) peanut species. Plant Syst Evol 214:251–262. doi: 10.1007/BF00985743 CrossRefGoogle Scholar
  97. Ram M (2014) Polyploidy and distant hybridization in plant breeding. In: Ram M (ed) Plant breeding methods. PHI Learning Pvt Ltd., New Delhi, pp 423–445Google Scholar
  98. Ramanna MS, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement: a review. Euphytica 133:3–8. doi: 10.1023/A:1025600824483 CrossRefGoogle Scholar
  99. Ramsey J, Ramsey TS (2014) Ecological studies of polyploidy in the 100 years following its discovery. Phil Trans R Soc B 369:1–20. doi: 10.1098/rstb.2013.0352 CrossRefGoogle Scholar
  100. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Evol Syst 29:467–501. doi: 10.1146/annurev.ecolsys.29.1.467 CrossRefGoogle Scholar
  101. Randolph LF (1932) Some effects of high temperature on polyploidy and other variations in maize. Proc Natl Acad Sci USA 18:222–229PubMedCentralPubMedCrossRefGoogle Scholar
  102. Randolph LF (1942) The influence of heterozygosis on fertility and vigor in autotetraploid maize. Genetics 27:163Google Scholar
  103. Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. Am J Bot 101:1–15. doi: 10.3732/ajb.1400119 CrossRefGoogle Scholar
  104. Roullier C, Duputié A, Wennekes P et al (2013) Disentangling the origins of cultivated sweet potato (Ipomoea batatas (L.) Lam.). PLoS ONE 8:1–12. doi: 10.1371/journal.pone.0062707 CrossRefGoogle Scholar
  105. Roy AT, Leggett G, Koutoulis A (2001) In vitro tetraploid induction and generation of tetraploids from mixoploids in hop (Humulus lupulus L.). Plant Cell Rep 20:489–495. doi: 10.1007/s002990100364 CrossRefGoogle Scholar
  106. Sajjad YASAR, Jaskani MJ, Mehmood A, Ahmad I, Abbas HAIDER (2013) Effect of colchicine on in vitro polyploidy induction in African marigold (Tagetes erecta). Pak J Bot 45:1255–1258Google Scholar
  107. Schifino-Wittman MT, Dall’Agnol M (2003) Indução de poliploidia no melhoramento de plantas. Pesq Agrop Gaúcha 9:155–164Google Scholar
  108. Schlegel R (2006) Rye (Secale cereale L): a younger crop plant with a bright future. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement: cereals, vol 2. CRC Press, New YorkGoogle Scholar
  109. Sedov EN (2014) Apple breeding programs and methods, their development and improvement. Russ J Genet 4:43–51. doi: 10.1134/S2079059714010092 CrossRefGoogle Scholar
  110. Sedov EN, Sedysheva GA, Serova ZM, Gorbacheva NG, Melnik SA (2014) Breeding assessment of heteroploid crosses in the development of triploid apple varieties. Russ J Genet 4:52–59. doi: 10.1134/S2079059714010109 CrossRefGoogle Scholar
  111. Silva PAKXM, Callegari-Jacques S, Bodanese-Zanettini MH (2000) Induction and identification of polyploids in Cattleya intermedia Lindl. (Orchidaceae) by in vitro techniques. Ciênc Rural 30:105–111. doi: 10.1590/S0103-84782000000100017 CrossRefGoogle Scholar
  112. Silva SO, Junior MTS, Alves EJ, Silveira JRS, Lima MB (2001) Banana breeding program at Embrapa. Crop Breed Appl Biotechnol 1:399–436CrossRefGoogle Scholar
  113. Simmonds NW (1980) Polyploidy in plant breeding. SPAN 23:73–75Google Scholar
  114. Small E, Jomphe M (1989) A synopsis of the genus Medicago (Leguminosae). Can J Bot 67:3260–3294. doi: 10.1139/b89-405 CrossRefGoogle Scholar
  115. Smulders MJ, Esselink GD, Everaert I, De Riek J, Vosman B (2010) Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers. BMC Genet 11:41–52. doi: 10.1186/1471-2156-11-41 PubMedCentralPubMedCrossRefGoogle Scholar
  116. Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92:8089–8091PubMedCentralPubMedCrossRefGoogle Scholar
  117. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352. doi: 10.1016/S0169-5347(99)01638-9 PubMedCrossRefGoogle Scholar
  118. Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057. doi: 10.1073/pnas.97.13.7051 PubMedCentralPubMedCrossRefGoogle Scholar
  119. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588. doi: 10.1146/annurev.arplant.043008.092039 PubMedCrossRefGoogle Scholar
  120. Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since Plant speciation. New Phytol 161:173–191. doi: 10.1046/j.1469-8137.2003.00948.x CrossRefGoogle Scholar
  121. Soltis DE, Albert VA, Leebens-Mack J et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348. doi: 10.3732/ajb.0800079 PubMedCrossRefGoogle Scholar
  122. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723PubMedCentralPubMedCrossRefGoogle Scholar
  123. Speckmann GJ, Post J, Dijkstra H (1965) The length of stomata as an indicator for polyploidy in rye-grasses. Euphytica 14:225–230CrossRefGoogle Scholar
  124. Sreekumari MT, Jos JS, Nair SG (1999) ‘Sree Harsha’: a superior triploid hybrid in cassava. Euphytica 106:1–6. doi: 10.1023/A:1003473118487 CrossRefGoogle Scholar
  125. Stebbins GL (1947) Types of polyploids: their classification and significance. Adv Genet 1:403–429PubMedCrossRefGoogle Scholar
  126. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  127. Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, LondonGoogle Scholar
  128. Stewart AV (2006) Genetic origins of perennial ryegrass (Lolium perenne) for New Zealand pastures. Grassland Res Pract Ser 12:55–62Google Scholar
  129. Sybenga J (1992) Cytogenetics in plant breeding. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  130. Tayalé A, Parisod C (2013) Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 140:79–96. doi: 10.1159/000351318 PubMedCrossRefGoogle Scholar
  131. Taylor NL, Quesenberry KH (1996) Red clover science. Springer Science & Business Media, New York. doi: 10.1007/978-94-015-8692-4 CrossRefGoogle Scholar
  132. Tolety J, Sane A (2011) Antirrhinum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources plantation and ornamental crops. Springer-Verlag, New York, pp 1–14CrossRefGoogle Scholar
  133. Tran-Nguyen LTT, Condé BD, Smith SH, Ulyatt LI (2013) Outbreak of Fusarium wilt in seedless watermelon seedlings in the Northern Territory, Australia. Australas Plant Dis Notes 8:5–8. doi: 10.1007/s13314-012-0053-y CrossRefGoogle Scholar
  134. U.S. Department of Agriculture (2013) National watermelon report. USDA Agricultural Marketing Service. Accessed 23 April 2015
  135. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732. doi: 10.1038/nrg2600 PubMedCrossRefGoogle Scholar
  136. Van Tuyl JM, Meijer B, Van Diën MP (1992) The use of oryzalin as an alternative for colchicine in in vitro chromosome doubling of Lilium and Nerine. In VI Int Symp Flower Bulbs 325:625–630Google Scholar
  137. Whitaker VM (2011) Applications of molecular markers in strawberry. J Berry Res 1:115–127. doi: 10.3233/BR-2011-013 Google Scholar
  138. White JA, Lemus R (2014) Long-term summary of ryegrass varieties and ploidy types in Mississippi. Am J Plant Sci 5:3151–3158. doi: 10.4236/ajps.2014.521331 CrossRefGoogle Scholar
  139. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341. doi: 10.1038/35072009 PubMedCrossRefGoogle Scholar
  140. Wright GM (1983) Other cereals. In: Wratt GS, Smith HC (eds) Plant breeding in New Zealand. Butterworths of New Zealand, New Zealand, pp 41–56CrossRefGoogle Scholar
  141. Wu JH, Ferguson AR, Murray BG, Jia Y, Datson PM, Zhang J (2012) Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann Bot 109:169–179PubMedCentralPubMedCrossRefGoogle Scholar
  142. Yang XM, Cao ZY, An LZ, Wang YM, Frang XW (2006) In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica 152:217–224. doi: 10.1007/s10681-006-9203-7 CrossRefGoogle Scholar
  143. Yang X, Ye CY, Cheng ZM et al (2011) Genomic aspects of research involving polyploid plants. Plant Cell Tiss Org 104:387–397. doi: 10.1007/s11240-010-9826-1 CrossRefGoogle Scholar
  144. Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE (2000) Nuclear DNA amounts in roses. Ann Bot 85:557–561. doi: 10.1006/anbo.1999.1102 CrossRefGoogle Scholar
  145. Zhou S, Zhou G, Li K (2011) Euploid endosperm of triploid × diploid/tetraploid crosses results in aneuploidy embryo survival in Lilium. HortScience 46:558–562Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mariana Cansian Sattler
    • 1
  • Carlos Roberto Carvalho
    • 2
  • Wellington Ronildo Clarindo
    • 1
    Email author
  1. 1.Laboratório de Citogenética, Departamento de Biologia, Centro de Ciências AgráriasUniversidade Federal do Espírito SantoAlegreBrazil
  2. 2.Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da SaúdeUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations