Skip to main content

Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance

Abstract

Main conclusion

The enhanced expression of a P 1B -type ATPase gene ( SaHMA3 ) is essential for Cd hyperaccumulation and hypertolerance in Sedum alfredii Hance.

A functional understanding of the mechanism through which hyperaccumulator plants accumulate and tolerate extremely toxic metals is a prerequisite for the development of novel strategies for improving phytoremediation using engineered plants or natural hyperaccumulators as well as biofortification and food crop safety. Most hyperaccumulator species, however, are small and slow-growing, and their potential for large-scale decontamination of polluted soils is limited. Sedum alfredii Hance, the only one metal hyperaccumulator from the Crassulaceae family, is an ideal candidate for gaining a functional understanding of the intra-family hyperaccumulation mechanisms as well as their potential applications. In the present study, we isolated and functionally characterized a P1B-type ATPase gene (SaHMA3) from S. alfredii Hance. SaHMA3 alleles from a hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) were constitutively expressed in both shoot and root and encoded tonoplast-localized proteins, but showed differences in transport substrate specificity and expression level. SaHMA3 h from the HE plant was a Cd transporter. In contrast, SaHMA3n from NHE plants was able to transport both Zn and Cd. SaHMA3 showed a significantly higher constitutive expression level in HE plants than in NHE plants. Furthermore, the expression level of SaHMA3 in the shoots of HE plants was considerably higher than in the roots. Overexpression of SaHMA3h in tobacco plants significantly enhanced Cd tolerance and accumulation and greatly increased the root sequestration of Cd. In summary, our data suggested that SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator S. alfredii Hance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

HE:

Hyperaccumulating ecotype

NHE:

Non-hyperaccumulating ecotype

HMA:

Heavy metal ATPase

GFP:

Green fluorescence protein

References

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy-metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J & C Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  PubMed  Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    Article  CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE (2012) Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genet 8(9):e1002923. doi:10.1371/journal.pgen.1002923

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Cobbett CS, Hussain D, Haydon MJ (2003) Structural and functional relationships between type 1B heavy metal-transporting P-type ATPases in Arabidopsis. New Phytol 159:315–321

    Article  CAS  Google Scholar 

  • Craciun AR, Meyer CL, Chen JG, Roosens N, De Groodt R, Hilson P, Verbruggen N (2012) Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J Exp Bot 63:4179–4189

    Article  CAS  PubMed  Google Scholar 

  • Eren E, Arguello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712–3723

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Lannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–392

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. P Natl Acad Sci USA 97:4627–4631

    Article  CAS  Google Scholar 

  • Leitenmaier B, Küpper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Frontiers Plant Sci 4:374. doi:10.3389/fpls.2013.00374

    Article  Google Scholar 

  • Liang J, Shohag MJ, Yang X, Tian S, Zhang Y, Feng Y, He Z (2014) Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance. Ecotoxicol Environ Saf 100:159–165

    Article  CAS  PubMed  Google Scholar 

  • Lochlainn SO, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR (2011) Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS ONE 6(3):e17814. doi:10.1371/journal.pone.0017814

    Article  CAS  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P-1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Smith AT, Barupala D, Stemmler TL, Rosenzweig AC (2015) A new metal binding domain involved in cadmium, cobalt and zinc transport. Nat Chem Biol 11:678–684

    Article  CAS  PubMed  Google Scholar 

  • Su C, Jiang L, Zhang W (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environmental Skeptics and Critics 3:24–38

    Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Tian SK, Lu LL, Labavitch J, Yang XE, He ZL, Hu HN, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. P Natl Acad Sci USA 107:16500–16505

    Article  CAS  Google Scholar 

  • Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Zambrano MC, Kaskie M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  CAS  PubMed  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11:1650–1663

    Article  CAS  PubMed  Google Scholar 

  • Wang KT, Sitsel O, Meloni G, Autzen HE, Andersson M, Klymchuk T, Nielsen AM, Rees DC, Nissen P, Gourdon P (2014) Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514:518–522

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Williams LE, Mills RF (2005) P-1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  CAS  PubMed  Google Scholar 

  • Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    Article  CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Yang XE, Li TQ, Long XX, Xiong YH, He ZL, Stoffella PJ (2006) Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance. Plant Soil 284:109–119

    Article  CAS  Google Scholar 

  • Zhang M, Senoura T, Yang XE, Nishizawa NK (2011) Functional analysis of metal tolerance proteins isolated from Zn/Cd hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance. FEBS Lett 585:2604–2609

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang M, Tian S, Lu L, Shohag MJ, Yang X (2014) Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS ONE 9(7):e102750. doi:10.1371/journal.pone.0102750

    PubMed Central  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Dr. Eide, University of Wisconsin-Madison, USA for gifting the Δzrc1 yeast mutant strain. We thank John M. Ward, University of Minnesota, for his kindly supplying the pDR196 vector. We thank Prof. Jean-Paul Schwitzguebel, EPFL, for critical revision of the manuscript. This work was supported by the National Natural Science Foundation of China (No. 31372128; 31401949; 21177107; 31301836); China Postdoctoral Science Foundation Grant (No. 2014M550329; 2013M530285); Fundamental Research Funds for the Central Universities (No. 2013FZA6005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengke Tian or Xiaoe Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

J. Zhang and M. Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1118 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, M., Shohag, M.J.I. et al. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Planta 243, 577–589 (2016). https://doi.org/10.1007/s00425-015-2429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2429-7

Keywords

  • Cadmium
  • Hyperaccumulator
  • P1B-type ATPase
  • Sedum
  • Sequestration
  • Transporter
  • Vacuole