Skip to main content
Log in

The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Our study demonstrated that the NAPDH oxidase gene MtRbohE is expressed in arbusculated cells and plays a role in arbuscule development.

Plant NADPH oxidases, known as respiratory burst oxidase homologs (RBOH), belong to a multigenic family that plays an important role in the regulation of plant development and responses to biotic and abiotic stresses. In this study, we monitored the expression profiles of five Rboh genes (MtRbohA, MtRbohB, MtRbohE, MtRbohG, MtRbohF) in the roots of the model species Medicago truncatula upon colonization by arbuscular mycorrhizal fungi. A complementary cellular and molecular approach was used to monitor changes in mRNA abundance and localize transcripts in different cell types from mycorrhizal roots. Rboh transcript levels did not drastically change in total RNA extractions from whole mycorrhizal and non-mycorrhizal roots. Nevertheless, the analysis of laser microdissected cells and Agrobacterium rhizogenes-transformed roots expressing a GUS transcriptional fusion construct highlighted the MtRbohE expression in arbuscule-containing cells. Furthermore, the down regulation of MtRbohE by an RNAi approach generated an altered colonization pattern in the root cortex, when compared to control roots, with fewer arbuscules and multiple penetration attempts. Altogether our data indicate a transient up-regulation of MtRbohE expression in cortical cells colonized by arbuscules and suggest a role for MtRbohE in arbuscule accommodation within cortical cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhizal

Dpi:

Days post-inoculation

RBOH:

Respiratory burst oxidase homolog

RNAi:

RNA interference

ROC:

Root organ culture

ROS:

Reactive oxygen species

References

  • Aguirre J, Lambeth JD (2010) Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic Biol Med 49:1342–1353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrio E, Marino D, Marmeys A, Dunoyer de Segonzac M, Damiani I, Genre A, Huguet S, Frendo P, Puppo A, Pauly N (2013) Hydrogen peroxide-regulated genes in the Medicago truncatulaSinorhizobium meliloti symbiosis. New Phytol 198:179–189

    Article  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arthikala M-K, Montiel J, Nava N, Santana O, Rosana Sánchez-López R, Cárdenas L, Quinto C (2013) PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. Plant Cell Physiol 54:1391–1402

    Article  PubMed  CAS  Google Scholar 

  • Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Bonneau L, Huguet S, Wipf D, Pauly N, Truong H-N (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202

    Article  PubMed  CAS  Google Scholar 

  • Chabaud M, Venard C, Defaux-Petras A, Bécard G, Barker DG (2002) Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi. New Phytol 156:265–273

    Article  CAS  Google Scholar 

  • Dumas-Gaudot E, Gollotte A, Cordier C, Gianinazzi S, Gianinazzi-Pearson V (2000) Modulation of hist defence systems. In: Douds D, Kapulnik Y (eds) Arbuscular mycorrhizas: molecular biology and physiology. Kluwer, New York, pp 173–200

    Chapter  Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379

    Article  PubMed  CAS  Google Scholar 

  • Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184:975–987

    Article  PubMed  CAS  Google Scholar 

  • Fiorilli V, Lanfranco L, Bonfante P (2013) The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta 237:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Fortin JA, Bécard G, Declerck S, Dalpé Y, St Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528

    Article  PubMed  CAS  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202

    Article  PubMed  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587–594

    Article  Google Scholar 

  • Guether M, Balestrini R, Hannah MA, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal in Lotus japonicus. New Phytol 182:200–212

    Article  PubMed  CAS  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  PubMed  CAS  Google Scholar 

  • Harrison M, Dewbre G, Liu J (2002) A phosphate transporter of Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux, Farnham Royal

    Google Scholar 

  • Hogekamp C, Arndt D, Pereira P, Becker JD, Hohnjec N, Küster H (2011) Laser-microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157:2023–2043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamet A, Mandon K, Puppo A, Herouart D (2007) H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis. J Bacteriol 189:8741–8745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–1080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U et al (2012) Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol 159:501–516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kormanik PP, McGraw AC (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenk NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, pp 37–47

    Google Scholar 

  • Kuhn H, Küster H, Requena N (2010) Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytol 185:716–733

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxidedismutase which is up-regulated during the symbiosis with legume hosts. Plant Physiol 137:1319–1330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linderman RG (2000) Effects of mycorrhizas on plant tolerance to diseases. In: Kapulnick Y, Douds DD Jr (eds) Arbuscular mycorrhizas: Physiology and function. Kluwer Academic Press, Dordrecht, pp 345–366

    Chapter  Google Scholar 

  • Lohar DP, Haridas S, Gantt JS, VandenBosch KA (2007) A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume–rhizobia symbiosis. New Phytol 173:39–49

    Article  PubMed  CAS  Google Scholar 

  • Macpherson N, Takeda S, Shang Z, Dark A, Mortimer JC, Brownlee C, Dolan L, Davies JM (2008) NADPH oxidase involvement in cellular integrity. Planta 227:1415–1418

    Article  PubMed  CAS  Google Scholar 

  • Marino D, Andrio E, Danchin EGJ, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N (2011) A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytol 189:580–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  PubMed  CAS  Google Scholar 

  • Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S (2007) Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Nat Acad Sci USA 104:20996–21001

    Article  PubMed  PubMed Central  Google Scholar 

  • Montiel J, Nava N, Cárdenas L, Sánchez-López R, Arthikala MK, Santana O et al (2012) A Phaseolus vulgaris NADPH oxidase gene is required for root infection by rhizobia. Plant Cell Physiol 53:1751–1767

    Article  PubMed  CAS  Google Scholar 

  • Müller K, Anna Catharina Carstens AC, Ada Linkies A, Torres MA, Leubner-Metzger G (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184:885–897

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  PubMed  CAS  Google Scholar 

  • Oda T et al (2010) Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications. J Biol Chem 285:1435–1445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peleg-Grossman S, Volpin H, Levine A (2007) Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. J Exp Bot 58:1637–1649

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Grossman S, Melamed-Book N, Levine A (2012) ROS production during symbiotic infection suppresses pathogenesis-related gene expression. Plant Signal Behav 7:409–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unravelling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  PubMed  CAS  Google Scholar 

  • Puppo A, Pauly N, Bosacri A, Manodn K, Brouquisse R (2013) Hydrogen peroxide and nitric oxide: key regulators of the legume-Rhizobium and mycorrhizal symbiosis. Antioxid Redox Sign 18:1–18

    Article  CAS  Google Scholar 

  • Ramu SK, Peng H-M, Cook DR (2002) Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. Mol Plant Microbe Interact 15:522–528

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen R (2001) Quantification on the LightCycler. In: Mener S, Wittwer C, Nakagawara K (eds) Rapid cycle real time PCR: methods and applications. Springer Press, Heidelberg, pp 21–34

    Chapter  Google Scholar 

  • Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP, Becana M (2004) Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Mol Plant Microbe Interact 17:1294–1305

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salzer P, Corbiere H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325

    Article  CAS  Google Scholar 

  • Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol Plant Microbe Interact 14:86–89

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109

    Article  PubMed  CAS  Google Scholar 

  • Simon-Plas F, Elmayan T, Blein JP (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31:137–147

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  PubMed  CAS  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Nat Acad Sci USA 99:517–522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221

    Google Scholar 

  • Tudzynski P, Heller J, Siegmund U (2012) Reactive oxygen species generation in fungal development and pathogenesis. Curr Opin Microbiol 15:653–659

    Article  PubMed  CAS  Google Scholar 

  • Venkateshwaran M, Volkening JD, Sussman MR, Ané J-M (2013) Symbiosis and the social network of higher plants. Curr Opin Plant Biol 16:118–127

    Article  PubMed  CAS  Google Scholar 

  • Vieweg MF, Hohnjec N, Kuster H (2005) Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta 220:757–766

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82(83):969–974

    Article  PubMed  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to Raffaella Balestrini for her precious help in the microdissection experiments, Valentina Fiorilli for the help in the time course experiment and Mara Novero and Marion Dunoyer de Segonzac for the technical assistance. Research was funded by the BIOBIT-Converging Technology project (WP2) to LL, the University grant (60 %) to LL and AG, the BLAN07-2_182872 ANR research program to AP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Lanfranco.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmondo, S., Calcagno, C., Genre, A. et al. The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. Planta 243, 251–262 (2016). https://doi.org/10.1007/s00425-015-2407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2407-0

Keywords

Navigation