, Volume 242, Issue 6, pp 1263–1276 | Cite as

The roles of tetrapyrroles in plastid retrograde signaling and tolerance to environmental stresses

  • Zhong-Wei Zhang
  • Gong-Chang Zhang
  • Feng Zhu
  • Da-Wei Zhang
  • Shu YuanEmail author


Main conclusion

This review provides new insights that tetrapyrrole signals play important roles in nuclear gene expression, chloroplast development and plant’s resistance to environmental stresses.

Higher plants contain many tetrapyrroles, including chlorophyll (Chl), heme, siroheme, phytochromobilin and some of their precursors, all of which have important biological functions. Genetic and physiological studies indicated that tetrapyrrole (mainly Mg-protoporphyrin IX) retrograde signals control photosynthesis-associated nuclear gene (PhANG) expression. Recent studies have shown that tetrapyrrole-derived signals may correlate with plant resistance to environmental stresses such as drought, high-light stress, water stress, osmotic stress, salinity and heavy metals. Signaling and physiological roles of Mg-protoIX-binding proteins (such as PAPP5, CRD and HSP90) and heme-binding proteins (such as HO and TSPO) and tetrapyrrole-signaling components (such as GUN1, ABI4 and CBFA) are summarized. Some of them positively regulate plant development and response to environmental stresses. The intermediate signaling components (such as PTM, HSP70–HSP90–HAP1 complex and PAPP5) between the nucleus and the plastid also positively regulate plant resistance to environmental stresses. This review provides new insights that genetically modified plants with enhanced tetrapyrrole levels have improved resistance to environmental stresses.


Mg-protoIX Heme GUN Environmental stresses Plastid retrograde signaling 



This work was supported by the Sichuan Natural Science Foundation (13ZB0296 and 014z1700), the Preeminent Youth Fund of Sichuan Province (2015JQO045) and the National Natural Science Foundation of China (31300207). We thank LetPub for its linguistic assistance during the preparation of this manuscript and Dr. Ming Yuan (Sichuan Agricultural University) for helpful discussion.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adhikari ND, Froehlich JE, Strand DD, Buck SM, Kramer DM, Larkin RM (2011) GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-Chelatase and promote chlorophyll biosynthesis in Arabidopsis. Plant Cell 23:1449–1467PubMedCentralCrossRefPubMedGoogle Scholar
  2. Ankele E, Kindgren P, Pesquet E, Strand Å (2007) In vivo visualization of Mg-Protoporphyrin IX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast. Plant Cell 19:1964–1979PubMedCentralCrossRefPubMedGoogle Scholar
  3. Barajas-López Jde D, Blanco NE, Strand Å (2013a) Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochim Biophys Acta 1833:425–437CrossRefPubMedGoogle Scholar
  4. Barajas-López Jde D, Kremnev D, Shaikhali J, Piñas-Fernández A, Strand Å (2013b) PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development. PLoS One 8:e60305CrossRefPubMedGoogle Scholar
  5. Bose J, Xie Y, Shen W, Shabala S (2013) Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. J Exp Bot 64:471–481PubMedCentralCrossRefPubMedGoogle Scholar
  6. Cao Z, Geng B, Xu S, Xuan W, Nie L, Shen W, Liang Y, Guan R (2011) BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation. J Exp Bot 62:4675–4689PubMedCentralCrossRefPubMedGoogle Scholar
  7. Cheng J, He CX, Zhang ZW, Xu F, Zhang DW, Wang X, Yuan S, Lin HH (2011) Plastid signals confer Arabidopsis tolerance to water stress. Z Naturforsch 66c:47–54Google Scholar
  8. Cottage A, Mott EK, Kempster JA, Gray JC (2010) The Arabidopsis plastid-signalling mutant gun1 (genomes uncoupled1) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development. J Exp Bot 61:3773–3786PubMedCentralCrossRefPubMedGoogle Scholar
  9. Cui W, Zhang J, Xuan W, Xie Y (2013) Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa. J Plant Physiol 170:1328–1336CrossRefPubMedGoogle Scholar
  10. Dordas C (2009) Nonsymbiotic hemoglobins and stress tolerance in plants. Plant Sci 176:433–440CrossRefGoogle Scholar
  11. Doré S, Takahashi M, Ferris CD, Hester LD, Guastella D, Snyder SH (1999) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci USA 96:2445–2450PubMedCentralCrossRefPubMedGoogle Scholar
  12. Duanmu D, Casero D, Dent RM, Gallaher S, Yang W, Rockwell NC, Martin SS, Pellegrini M, Niyogi KK, Merchant SS, Grossman AR, Lagarias JC (2013) Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. Proc Natl Acad Sci USA 110:3621–3626PubMedCentralCrossRefPubMedGoogle Scholar
  13. Enami K, Ozawa T, Motohashi N, Nakamura M, Tanaka K, Hanaoka M (2011) Plastid-to-nucleus retrograde signals are essential for the expression of nuclear starch biosynthesis genes during amyloplast differentiation in tobacco BY-2 cultured cells. Plant Physiol 157:518–530PubMedCentralCrossRefPubMedGoogle Scholar
  14. Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley C, Hell R, Marin E, Pogson BJ (2011) Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23:3992–4012PubMedCentralCrossRefPubMedGoogle Scholar
  15. Gadjieva R, Axelsson E, Olsson U, Hansson M (2005) Analysis of gun phenotype in barley magnesium chelatase and Mg-protoporphyrin IX monomethyl ester cyclase mutants. Plant Physiol Biochem 43:901–908CrossRefPubMedGoogle Scholar
  16. Gläßer C, Haberer G, Finkemeier I, Pfannschmidt T, Kleine T, Leister D, Dietz KJ, Häusler RE, Grimm B, Mayer KF (2014) Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core Module of genes embedded in complex cellular signaling networks. Mol Plant 7:1167–1190CrossRefPubMedGoogle Scholar
  17. Grabowski E, Miao Y, Mulisch M, Krupinska K (2008) Single-stranded DNA-binding protein Whirly1 in barley leaves is located in plastids and the nucleus of the same cell. Plant Physiol 147:1800–1804PubMedCentralCrossRefPubMedGoogle Scholar
  18. Huang YS, Li HM (2009) Arabidopsis CHLI2 can substitute for CHLI1. Plant Physiol 150:636–645PubMedCentralCrossRefPubMedGoogle Scholar
  19. Huang J, Han B, Xu S, Zhou M, Shen W (2011) Heme oxygenase-1 is involved in the cytokinin-induced alleviation of senescence in detached wheat leaves during dark incubation. J Plant Physiol 168:768–775CrossRefPubMedGoogle Scholar
  20. Jahns P, Graf M, Munekage Y, Shikanai T (2002) Single point mutation in the Rieske iron-sulfur subunit of cytochrome b6/f leads to an altered pH dependence of plastoquinol oxidation in Arabidopsis. FEBS Lett 519:99–102CrossRefPubMedGoogle Scholar
  21. Kauss D, Bischof S, Steiner S, Apel K, Meskauskiene R (2012) FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the Mg++-branch of this pathway. FEBS Lett 586:211–216CrossRefPubMedGoogle Scholar
  22. Kim C, Apel K (2013) 1O2-mediated and EXECUTER-dependent retrograde plastid-to-nucleus signaling in norflurazon-treated seedlings of Arabidopsis thaliana. Mol Plant 6:1580–1591PubMedCentralCrossRefPubMedGoogle Scholar
  23. Kindgren P, Eriksson MJ, Benedict C, Mohapatra A, Gough SP, Hansson M, Kieselbach T, Strand Å (2011) A novel proteomic approach reveals a role for Mg-protoporphyrin IX in response to oxidative stress. Physiol Plant 141:310–320CrossRefPubMedGoogle Scholar
  24. Kindgren P, Norén L, Barajas-López JD, Shaikhali J, Strand Å (2012) Interplay between HEAT SHOCK PROTEIN 90 and HY5 controls PhANG expression in response to the GUN5 plastid signal. Mol Plant 5:901–913CrossRefPubMedGoogle Scholar
  25. Kobayashi Y, Imamura S, Hanaoka M, Tanaka K (2011) A tetrapyrrole-regulated ubiquitin ligase controls algal nuclear DNA replication. Nat Cell Biol 13:483–487CrossRefPubMedGoogle Scholar
  26. Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13:425–436PubMedCentralCrossRefPubMedGoogle Scholar
  27. Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719CrossRefPubMedGoogle Scholar
  28. Krause K, Oetke S, Krupinska K (2012) Dual targeting and retrograde translocation: regulators of plant nuclear gene expression can be sequestered by plastids. Int J Mol Sci 13:11085–11101PubMedCentralCrossRefPubMedGoogle Scholar
  29. Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906CrossRefPubMedGoogle Scholar
  30. Lee KP, Kim C, Landgraf F, Apel K (2008) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 87:10270–10275Google Scholar
  31. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedGoogle Scholar
  32. McCormac AC, Terry MJ (2002) Loss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response. Plant Physiol 130:402–414PubMedCentralCrossRefPubMedGoogle Scholar
  33. Mense SM, Zhang L (2006) Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res 16:681–692CrossRefPubMedGoogle Scholar
  34. Meskauskiene R, Nater M, Goslings D, Kessler F, Op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831PubMedCentralCrossRefPubMedGoogle Scholar
  35. Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785PubMedCentralCrossRefPubMedGoogle Scholar
  36. Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci USA 105:15184–15189PubMedCentralCrossRefPubMedGoogle Scholar
  37. Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci USA 105:15178–15183PubMedCentralCrossRefPubMedGoogle Scholar
  38. Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240PubMedCentralCrossRefPubMedGoogle Scholar
  39. Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H, Takamiya K (1998) Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent ChlH protein within the chloroplast. Plant Cell Physiol 39:275–284CrossRefPubMedGoogle Scholar
  40. Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S, Suwastika IN, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T (2012) Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 3:926CrossRefPubMedGoogle Scholar
  41. Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759CrossRefPubMedGoogle Scholar
  42. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071PubMedCentralPubMedGoogle Scholar
  43. Peter E, Grimm B (2009) GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis. Mol Plant 2:1198–1210CrossRefPubMedGoogle Scholar
  44. Phung TH, Jung HI, Park JH, Kim JG, Back K, Jung S (2011) Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol 157:1746–1764PubMedCentralCrossRefPubMedGoogle Scholar
  45. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci USA 109:5535–5540PubMedCentralCrossRefPubMedGoogle Scholar
  46. Ramel F, Mialoundama AS, Havaux M (2013) Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants. J Exp Bot 64:799–805CrossRefPubMedGoogle Scholar
  47. Reinbothe C, Lebedev N, Reinbothe S (1999) A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants Nature 397:80–84Google Scholar
  48. Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signalling mechanisms. Annu Rev Plant Biol 57:837–858PubMedCentralCrossRefPubMedGoogle Scholar
  49. Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935PubMedCentralCrossRefPubMedGoogle Scholar
  50. Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826CrossRefPubMedGoogle Scholar
  51. Sibéril Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Modular structure and activation mechanisms. Eur J Biochem 268:5655–5666CrossRefPubMedGoogle Scholar
  52. Strand Å, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421:79–83CrossRefPubMedGoogle Scholar
  53. Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L (2011) A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun 2:477CrossRefPubMedGoogle Scholar
  54. Susek RE, Ausubel FM, Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74:787–799CrossRefPubMedGoogle Scholar
  55. Svensson JT, Crosatti C, Campoli C, Bassi R, Stanca AM, Close TJ, Cattivelli L (2006) Transcriptome analysis of cold acclimation in barley albina and xantha mutants. Plant Physiol 141:257–270PubMedCentralCrossRefPubMedGoogle Scholar
  56. Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346CrossRefPubMedGoogle Scholar
  57. Tang H, Zhang DW, Yuan S, Zhu F, Xu F, Fu FQ, Wang SX, Lin HH (2014) Plastid signals induce ALTERNATIVE OXIDASE expression to enhance the cold stress tolerance in Arabidopsis thaliana. Plant Growth Regul 74:275–283CrossRefGoogle Scholar
  58. Terry MJ, Smith AG (2013) A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. Front Plant Sci 4:14PubMedCentralCrossRefPubMedGoogle Scholar
  59. Terry MJ, Wahleithner JA, Lagarias JC (1993) Biosynthesis of the plant photoreceptor phytochrome. Arch Biochem Biophys 306:1–15CrossRefPubMedGoogle Scholar
  60. Tripathy BC, Sherameti I, Oelmüller R (2010) Siroheme: an essential component for life on earth. Plant Signal Behav 5:14–20PubMedCentralCrossRefPubMedGoogle Scholar
  61. Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H (2011) The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 23:785–805PubMedCentralCrossRefPubMedGoogle Scholar
  62. Verma DP, Bal AK (1976) Intracellular site of synthesis and localization of leghemoglobin in root nodules. Proc Natl Acad Sci USA 73:3843–3847PubMedCentralCrossRefPubMedGoogle Scholar
  63. Voigt C, Oster U, Börnke F, Jahns P, Dietz KJ, Leister D, Kleine T (2010) In-depth analysis of the distinctive effects of norflurazon implies that tetrapyrrole biosynthesis, organellar gene expression and ABA cooperate in the GUN-type of plastid signaling. Physiol Plant 138:503–519CrossRefPubMedGoogle Scholar
  64. von Gromoff ED, Alawady A, Meinecke L, Grimm B, Beck CF (2008) Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant Cell 20:552–567CrossRefGoogle Scholar
  65. Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F, Lee KP, Würsch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185CrossRefPubMedGoogle Scholar
  66. Wang P, Gao J, Wan C, Zhang F, Xu Z, Huang X, Sun X, Deng X (2010) Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol 153:994–1003PubMedCentralCrossRefPubMedGoogle Scholar
  67. Wang P, Wan C, Xu Z, Wang P, Wang W, Sun C, Ma X, Xiao Y, Zhu J, Gao X, Deng X (2013) One divinyl reductase reduces the 8-vinyl groups in various intermediates of chlorophyll biosynthesis in a given higher plant species, but the isozyme differs between species. Plant Physiol 161:521–534PubMedCentralCrossRefPubMedGoogle Scholar
  68. Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21:1109–1128PubMedCentralCrossRefPubMedGoogle Scholar
  69. Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, von Caemmerer S, Pogson BJ (2009) The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J 58:299–317CrossRefPubMedGoogle Scholar
  70. Woodson JD, Perez-Ruiz JM, Chory J (2011) Heme Synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21:897–903CrossRefPubMedGoogle Scholar
  71. Xiao Y, Savchenko T, Baidoo EE, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K (2012) Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149:1525–1535CrossRefPubMedGoogle Scholar
  72. Xiao Y, Wang J, Dehesh K (2013) Review of stress specific organelles-to-nucleus metabolic signal molecules in plants. Plant Sci 212:102–107CrossRefPubMedGoogle Scholar
  73. Xie Y, Ling T, Han Y, Liu K, Zheng Q, Huang L, Yuan X, He Z, Hu B, Fang L, Shen Z, Yang Q, Shen W (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots. Plant Cell and Environ 31:1864–1881CrossRefGoogle Scholar
  74. Yuan M, Yuan S, Zhang ZW, Xu F, Chen YE, Du JB, Lin HH (2010) Putative mutation mechanism and light responses of a protochlorophyllide oxidoreductase-less barley mutant NYB. Plant Cell Physiol 51:1361–1371CrossRefPubMedGoogle Scholar
  75. Yuan M, Zhang DW, Zhang ZW, Chen YE, Yuan S, Guo YR, Lin HH (2012) Assembly of NADPH: protochlorophyllide oxidoreductase complex is needed for effective greening of barley seedlings. J Plant Physiol 169:1311–1316CrossRefPubMedGoogle Scholar
  76. Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337CrossRefPubMedGoogle Scholar
  77. Zhang ZW, Yuan S, Xu F, Yang H, Zhang NH, Cheng J, Lin HH (2010) The plastid hexokinase pHXK: a node of convergence for sugar and plastid signals in Arabidopsis. FEBS Lett 584:3573–3579CrossRefPubMedGoogle Scholar
  78. Zhang ZW, Yuan S, Feng H, Xu F, Cheng J, Shang J, Zhang DW, Lin HH (2011a) Transient accumulation of Mg-protoporphyrin IX regulates expression of PhANGs—new evidence for a signalling role of tetrapyrroles in mature Arabidopsis plants. J Plant Physiol 168:714–721CrossRefPubMedGoogle Scholar
  79. Zhang ZW, Yuan S, Xu F, Yang H, Chen YE, Yuan M, Xu MY, Xue LW, Xu XC, Lin HH (2011b) Mg-protoporphyrin, haem and sugar signals double cellular total RNAs against herbicide and high-light-derived oxidative stress. Plant Cell Environ 34:1031–1042CrossRefPubMedGoogle Scholar
  80. Zhang ZW, Feng LY, Cheng J, Tang H, Xu F, Zhu F, Zhao ZY, Yuan M, Chen YE, Wang JH, Yuan S, Lin HH (2013) The roles of two transcription factors, ABI4 and CBFA, in ABA and plastid signalling and stress responses. Plant Mol Biol 83:445–458CrossRefPubMedGoogle Scholar
  81. Zhang ZW, Cheng J, Yuan M, Chen YE, Zhang DW, Zhu F, Yuan S (2015) Chemicals to induce plastid signals in Arabidopsis seedlings. Plant Biosyst. doi: 10.1080/11263504.2013.870936 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhong-Wei Zhang
    • 1
  • Gong-Chang Zhang
    • 1
  • Feng Zhu
    • 2
  • Da-Wei Zhang
    • 3
  • Shu Yuan
    • 1
    Email author
  1. 1.College of ResourcesSichuan Agricultural UniversityChengduChina
  2. 2.School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
  3. 3.College of Life ScienceSichuan UniversityChengduChina

Personalised recommendations