Metabolic and molecular analyses of white mutant Vaccinium berries show down-regulation of MYBPA1-type R2R3 MYB regulatory factor

Abstract

Main conclusion

MYBPA1-type R2R3 MYB transcription factor shows down-regulation in white mutant berries of Vaccinium uliginosum deficient in anthocyanins but not proanthocyanidins suggesting a role in the regulation of anthocyanin biosynthesis.

Berries of the genus Vaccinium are among the best natural sources of flavonoids. In this study, the expression of structural and regulatory flavonoid biosynthetic genes and the accumulation of flavonoids in white mutant and blue-colored wild-type bog bilberry (V. uliginosum) fruits were measured at different stages of berry development. In contrast to high contents of anthocyanins in ripe blue-colored berries, only traces were detected by HPLC–ESI–MS in ripe white mutant berries. However, similar profile and high levels of flavonol glycosides and proanthocyanidins were quantified in both ripe white and ripe wild-type berries. Analysis with qRT-PCR showed strong down-regulation of structural genes chalcone synthase (VuCHS), dihydroflavonol 4-reductase (VuDFR) and anthocyanidin synthase (VuANS) as well as MYBPA1-type transcription factor VuMYBPA1 in white berries during ripening compared to wild-type berries. The profiles of transcript accumulation of chalcone isomerase (VuCHI), anthocyanidin reductase (VuANR), leucoanthocyanidin reductase (VuLAR) and flavonoid 35 hydroxylase (VuF3′5′H) were more similar between the white and the wild-type berries during fruit development, while expression of UDP-glucose: flavonoid 3-O-glucosyltransferase (VuUFGT) showed similar trend but fourfold lower level in white mutant. VuMYBPA1, the R2R3 MYB family member, is a homologue of VmMYB2 of V. myrtillus and VcMYBPA1 of V. corymbosum and belongs to MYBPA1-type MYB family which members are shown in some species to be related with proanthocyanidin biosynthesis in fruits. Our results combined with earlier data of the role of VmMYB2 in white mutant berries of V. myrtillus suggest that the regulation of anthocyanin biosynthesis in Vaccinium species could differ from other species studied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ANR:

Anthocyanidin reductase

ANS:

Anthocyanidin synthase

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

F3′5′H:

Flavonoid 35 hydroxylase

LAR:

Leucoanthocyanidin reductase

UFGT:

UDP-glucose: flavonoid 3-O-glucosyltransferase

References

  1. Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, Davies KM (2011) Members of an R2R3-MYB transcription family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J 65:771–784

    CAS  Article  PubMed  Google Scholar 

  2. Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  3. Azuma A, Kobayashi S, Mitani N, Shiraishi M, Yamada M, Ueno T, Kono A, Yakushiji H, Koshita Y (2008) Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theor Appl Genet 117:1009–1019

    CAS  Article  PubMed  Google Scholar 

  4. Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067–1080

    CAS  Article  PubMed  Google Scholar 

  5. Bogs J, Jaffe FW, Takos AM, Walker AR, Robinson AS (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. Castellarin SD, Di Gaspero G (2007) Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol 7:46

    PubMed Central  Article  PubMed  Google Scholar 

  7. Gupta V, Estrada AD, Blakley I, Reid R, Patel K, Meyer MD, Andersen SU, Brown AF, Lila MA, Loraine AE (2015) RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing. GigaScience 4:5

    PubMed Central  Article  PubMed  Google Scholar 

  8. He J, Giusti M (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    CAS  Article  PubMed  Google Scholar 

  9. Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    CAS  Article  PubMed  Google Scholar 

  10. Hokkanen J, Mattila S, Jaakola L, Pirttilä AM, Tolonen A (2009) Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium × intermedium Ruthe L.) leaves. J Agric Food Chem 57:9437–9447

    CAS  Article  PubMed  Google Scholar 

  11. Huang Y-F, Vialet S, Guiraud J-L, Torregrosa L, Bertrand Y, Cheynier V, This P, Terrier N (2014) A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry. New Phytol 201:795–809

    CAS  Article  PubMed  Google Scholar 

  12. Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18:477–483

    CAS  Article  PubMed  Google Scholar 

  13. Jaakola L, Pirttilä AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from the bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    CAS  Article  PubMed  Google Scholar 

  14. Jaakola L, Määttä K, Pirttilä AM, Törrönen R, Kärenlampi S, Hohtola A (2002) Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol 130:729–739

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. Jaakola L, Pirttilä AM, Vuosku J, Hohtola A (2004) Method based on electrophoresis and gel extraction for obtaining genomic DNA-free cDNA without DNase treatment. Biotechniques 37:744–748

    CAS  PubMed  Google Scholar 

  16. Jaakola L, Poole M, Jones MO, Kämäräinen-Karppinen T, Koskimäki JJ, Hohtola A, Häggman H, Fraser PD, Manning K, King GJ, Thomson H, Seymour GB (2010) A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol 153:1619–1629

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  18. Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    CAS  Article  PubMed  Google Scholar 

  19. Koponen JM, Happonen AM, Auriola S, Kontkanen H, Buchert J, Poutanen KS, Törrönen AR (2008) Characterization and fate of black currant and bilberry flavonols in enzyme-aided processing. J Agric Food Chem 56:3136–3144

    CAS  Article  PubMed  Google Scholar 

  20. Koskimäki JJ, Hokkanen J, Jaakola L, Suorsa M, Tolonen A, Mattila S, Pirttilä AM, Hohtola A (2009) Flavonoid biosynthesis and degradation play a role in early defense responses of bilberry (Vaccinium myrtillus) against biotic stress. Eur J Plant Pathol 125:629–640

    Article  Google Scholar 

  21. Kuhn N, Guan L, Dai ZW, Wu BH, Lauvergeat V, Gomes E, Li SH, Godoy F, Arce-Johnson P, Delrot S (2014) Berry ripening: recently heard through the grapevine. J Exp Bot 65:4543–4559

    Article  PubMed  Google Scholar 

  22. Lätti AK, Riihinen KR, Kainulainen PS (2008) Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J Agric Food Chem 56:190–196

    Article  PubMed  Google Scholar 

  23. Lätti AK, Kainulainen PS, Hayirlioglu-Ayaz S, Ayaz FA, Riihinen KR (2009) Characterization of anthocyanins in Caucasian blueberries (Vaccinium arctostaphylos L.) native to Turkey. J Agric Food Chem 57:5244–5249

    Article  PubMed  Google Scholar 

  24. Lätti AK, Jaakola L, Riihinen KR, Kainulainen PS (2010) Anthocyanin and flavonol variation in bog bilberries (Vaccinium uliginosum L.) in Finland. J Agric Food Chem 58:427–433

    Article  PubMed  Google Scholar 

  25. Lätti AK, Riihinen KR, Jaakola L (2011) Phenolic compounds in berries and flowers of a natural hybrid between bilberry and lingonberry (Vaccinium × intermedium Ruthe). Phytochemistry 72:810–815

    Article  PubMed  Google Scholar 

  26. Li X, Sun H, Pei J, Dong Y, Wang F, Chen H, Sun Y, Wang N, Li H, Li Y (2012) De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene 511:54–61

    CAS  Article  PubMed  Google Scholar 

  27. Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    PubMed Central  Article  PubMed  Google Scholar 

  28. Määttä-Riihinen KR, Kamal-Eldin A, Mattila PH, González-Paramás AM, Törrönen AR (2004) Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J Agric Food Chem 52:4477–4486

    Article  PubMed  Google Scholar 

  29. Määttä-Riihinen KR, Kähkonen MP, Törrönen AR, Heinonen IM (2005) Catechins and procyanidins in berries of Vaccinium species and their antioxidant activity. J Agric Food Chem 53:8485–8491

    Article  PubMed  Google Scholar 

  30. Masuoka C, Yokoi K, Komatsu H, Kinjo J, Nohara T, Ono M (2007) Two novel antioxidant ortho-benzoyloxyphenyl acetic acid derivatives from the fruit of Vaccinium uliginosum. Food Sci Technol Res 13:215–220

    CAS  Article  Google Scholar 

  31. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffman T, Ring L, Rodríguez-Franco A, Caballero JL, Schwab W, Muñoz-Blanco J, Blanco-Portales R (2014) MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. J Exp Bot 65:401–417

    CAS  Article  PubMed  Google Scholar 

  32. Polashock J, Zelzion E, Fajardo D, Zalapa J, Georgi L, Bhattacharya D, Vorsa N (2014) The American cranberry: first insights into the whole genome of a species adapted to bog habitat. BMC Plant Biol 14:165

    PubMed Central  Article  PubMed  Google Scholar 

  33. Riihinen K, Jaakola L, Kärenlampi S, Hohtola A (2008) Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chem 110:156–160

    CAS  Article  PubMed  Google Scholar 

  34. Rowland LJ, Alkharouf N, Darwish O, Ogden EL, Polashock JJ, Bassil NV, Main D (2012) Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol 12:46

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  35. Schroeter H, Heiss C, Spencer JPE, Keen CL, Lupton JR, Schmitz HH (2010) Recommending flavanols and procyanidins for cardiovascular health: current knowledge and future needs. Mol Aspects Med 31:546–557

    CAS  Article  PubMed  Google Scholar 

  36. Shimada Y, Nakano-Shimada R, Ohbayashi M, Okinaka Y, Kiyokawa S, Kikuchi Y (1999) Expression of chimeric P450 genes encoding flavonoid-3,5-hydroxylase in transgenic tobacco and petunia plants. FEBS Lett 461:241–245

    CAS  Article  PubMed  Google Scholar 

  37. Tanaka Y, Brugliera F (2013) Flower colour and cytochromes P450. Philos Trans R Soc Lond B Biol Sci 368:20120432

    PubMed Central  Article  PubMed  Google Scholar 

  38. Terrier N, Torregosa L, Ageorges A, Vialet S, Verriès C, Cheynier V, Romieu C (2009) Ecotopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol 149:1028–1041

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  39. Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    CAS  Article  PubMed  Google Scholar 

  40. Zifkin M, Jin A, Ozga JA, Zaharia I, Schernthaner JP, Gesell A, Abrams SR, Kennedy JA, Constabel CP (2012) Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol 158:200–224

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  41. Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L (2014) Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci 5:534

    PubMed Central  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Finnish Cultural Foundation (AP), the Jenny and Antti Wihuri Foundation (AP) and the Academy of Finland (LJ, Post-doctoral researcher’s project 123471).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura Jaakola.

Ethics declarations

Conflict of interest

The authors declare that they do not have any competing interest.

Additional information

Special topic: Polyphenols: biosynthesis and function in plants and ecosystems. Guest editor: Stefan Martens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (DOCX 13 kb)

Supplementary material 3 (DOCX 13 kb)

425_2015_2363_MOESM4_ESM.pdf

Suppl. Fig. S1 The flavonoid biosynthetic pathway. CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; F3′H, flavonoid 3-hydroxylase; F3′5′H, flavonoid 35 hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; LAR, leucoanthocyanidin reductase; ANR, anthocyanidin reductase; UFGT, UDP-glucose: flavonoid 3-O-glucosyltransferase 4 (PDF 108 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Primetta, A.K., Karppinen, K., Riihinen, K.R. et al. Metabolic and molecular analyses of white mutant Vaccinium berries show down-regulation of MYBPA1-type R2R3 MYB regulatory factor. Planta 242, 631–643 (2015). https://doi.org/10.1007/s00425-015-2363-8

Download citation

Keywords

  • Anthocyanins
  • Bog bilberry
  • Flavonoids
  • Fruits
  • MYB transcription factors
  • Proanthocyanidins
  • Vaccinium uliginosum L.