Skip to main content

Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review

Abstract

Main conclusion

The present review discusses not only advances in coconut tissue culture and associated biotechnological interventions but also future research directions toward the resilience of this important palm crop.

Coconut (Cocos nucifera L.) is commonly known as the ‘tree of life’. Every component of the palm can be used to produce items of value and many can be converted into industrial products. Coconut cultivation faces a number of acute problems that reduce its productivity and competitiveness. These problems include various biotic and abiotic challenges as well as an unstable market for its traditional oil-based products. Around 10 million small-holder farmers cultivate coconut palms worldwide on c. 12 million hectares of land, and many more people own a few coconut palms that contribute to their livelihoods. Inefficiency in the production of seedlings for replanting remains an issue; however, tissue culture and other biotechnological interventions are expected to provide pragmatic solutions. Over the past 60 years, much research has been directed towards developing and improving protocols for (i) embryo culture; (ii) clonal propagation via somatic embryogenesis; (iii) homozygote production via anther culture; (iv) germplasm conservation via cryopreservation; and (v) genetic transformation. Recently other advances have revealed possible new ways to improve these protocols. Although effective embryo culture and cryopreservation are now possible, the limited frequency of conversion of somatic embryos to ex vitro seedlings still prevents the large-scale clonal propagation of coconut. This review illustrates how our knowledge of tissue culture and associated biotechnological interventions in coconut has so far developed. Further improvement of protocols and their application to a wider range of germplasm will continue to open up new horizons for the collection, conservation, breeding and productivity of coconut.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

BM72:

Karunaratne and Periyapperuma (1989) medium

ABA:

Abscisic acid

AC:

Activated charcoal

BAP:

6-Benzylaminopurine

GA3 :

Gibberellic acid

2iP:

2-Isopentyl adenine

2,4-D:

2,4-Dichlorophenoxyacetic acid

PGR(s):

Plant growth regulator(s)

TDZ:

Thidiazuron

SE:

Somatic embryogenesis

Y3:

Eeuwens (1976) basal medium

References

  1. Adkins SW, Samosir YMS (2002) Embryo culture activities at the University of Queensland. In: Engelmann F, Batugal P, Oliver L (eds) Coconut embryo in vitro culture: Part II. Merida, Mexico, pp 163–168

    Google Scholar 

  2. Adkins SW, Samosir YMS, Ernawati A, Godwin ID, Drew RA (1998) Control of ethylene and use of polyamines can optimise the conditions for somatic embryogenesis in coconut (Cocos nucifera L.) and papaya (Carica papaya L.). In: Drew RA (ed) Proceedings of the international symposium of biotechnology in tropical and subtropical species. Australia, Brisbane, pp 459–466

    Google Scholar 

  3. Andrade-Torres A, Oropeza C, Sáenz L, González-Estrada T, Ramírez-Benítez J, Becerril K, Chan J, Rodríguez-Zapata L (2011) Transient genetic transformation of embryogenic callus of Cocos nucifera. Biologia 66:790–800. doi:10.2478/s11756-011-0104-4

    CAS  Article  Google Scholar 

  4. Antonova ID (2009) Somatic embryogenesis for micropropagation of coconut (Cocos nucifera L.). PhD Thesis, The University of Queensland, Australia,

  5. Ashburner GR, Thompson WK, Burch JM (1993) Effect of alpha-naphthaleneacetic acid and sucrose levels on the development of cultured embryos of coconut. Plant Cell Tiss Org 35:157–163

    CAS  Article  Google Scholar 

  6. Assy-Bah B, Engelmann F (1992a) Cryopreservation of immature embryos of coconut (Cocos nucifera L.). CryoLett 13:67–74

    Google Scholar 

  7. Assy-Bah B, Engelmann F (1992b) Cryopreservation of mature embryos of coconut (Cocos nucifera L.) and subsequent regeneration of plantlets. CryoLett 13:117–126

    Google Scholar 

  8. Assy-Bah B, Durand-Gasselin T, Engelmann F, Pannetier C (1989) The in vitro culture of coconut (Cocos nucifera L.) zygotic embryos. Revised and simplified method of obtaining coconut plantlets for transfer to the field. Oleagineux 44:515–523

    Google Scholar 

  9. Backs-Hüsemann D, Reinert J (1970) Embryobildung durch isolierte Einzelzellen aus Gewebekulturen von Daucus carota. Protoplasma 70:49–60. doi:10.1007/BF01276841

    Article  Google Scholar 

  10. Bajaj YPS (1984) Induction of growth in frozen embryos of coconut and ovules of citrus. Curr Sci 53(22):1215–1216

    Google Scholar 

  11. Bandupriya H, Dunwell J (2012) Overexpression of CnANT, coconut BABYBOOM homologue alters plant growth and morphology in transgenic Arabidopsis plants. Trop Agr Res 23:249–260

    Google Scholar 

  12. Bandupriya HDD, Gibbings JG, Dunwell JM (2013) Isolation and characterization of an AINTEGUMENTA-like gene in different coconut (Cocos nucifera L.) varieties from Sri Lanka. Tree Genet Genomes 9:813–827. doi:10.1007/s11295-013-0600-5

    Article  Google Scholar 

  13. Bandupriya HDD, Gibbings JG, Dunwell JM (2014) Overexpression of coconut AINTEGUMENTA-like gene, CnANT, promotes in vitro regeneration in transgenic Arabidopsis. Plant Cell Tiss Org 116:67–79. doi:10.1007/s11240-013-0383-2

    CAS  Article  Google Scholar 

  14. Basu A, Sethi U, Guhamukherjee S (1988) Induction of cell division in leaf cells of coconut palm by alteration of pH and its correlation with glyoxalase-I activity. J Exp Bot 39:1735–1742. doi:10.1093/jxb/39.12.1735

    CAS  Article  Google Scholar 

  15. Batugal P, Bourdeix R, Baudouin L (2009) Coconut breeding. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 327-375. doi:10.1007/978-0-387-71201-7_10

  16. Bhallasarin N, Bagga S, Sopory SK, Guhamukherjee S (1986) Induction and differentiation of callus from embryos of Cocos nucifera L. by IAA-conjugates. Plant Cell Rep 5:322–324

    CAS  Article  Google Scholar 

  17. Blake J (1972) A specific bioassay for inhibition of flowering. Planta 103:126–128. doi:10.1007/bf00387363

    CAS  PubMed  Article  Google Scholar 

  18. Blake J, Hornung R (1995) Somatic embryogenesis in coconut (Cocos nucifera L.). In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants. Kluwer, Dordrecht, pp 327–349

    Chapter  Google Scholar 

  19. Blaydes DF (1966) Interaction of kinetin and various inhibitors in growth of soybean tissue. Physiol Plant 19(3):748–753. doi:10.1111/j.1399-3054.1966.tb07060.x

    CAS  Article  Google Scholar 

  20. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, Campagne MMV (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749. doi:10.1005/tpc.001941

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  21. Branton RL, Blake J (1983) Development of organized structures in callus derived from explants of Cocos nucifera L. Ann Bot 52:673–678

    Google Scholar 

  22. Chakraborty M, Mitra A (2008) The antioxidant and antimicrobial properties of the methanolic extract from Cocos nucifera mesocarp. Food Chem 107:994–999. doi:10.1016/j.foodchem.2007.08.083

    CAS  Article  Google Scholar 

  23. Chan JL, Saenz L, Talavera C, Hornung R (1998) Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Rep 17:515–521

    CAS  Article  Google Scholar 

  24. Chin HF, Krishnapillay B, Hor YL (1989) A note on the cryopreservation of embryos from young coconuts (Cocos nucifera var. Mawa). Pertanika 12(2):183–186

    Google Scholar 

  25. Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  26. Cordova I, Jones P, Harrison NA, Oropeza C (2003) In situ PCR detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Mol Plant Pathol 4:99–108. doi:10.1046/j.1364-3703.2003.00152.x

    CAS  PubMed  Article  Google Scholar 

  27. Cutter VM Jr, Wilson KS (1954) Effect of coconut endosperm and other growth stimulants upon the development in vitro of embryos of Cocos nucifera. Bot Gaz 115:234–240. doi:10.2307/2472513

    CAS  Article  Google Scholar 

  28. De Guzman EV, Del Rosario DA (1964) The growth and development of Cocos nucifera L. makapuno embryo in vitro. Philippine Agriculturist 48:82–94

    Google Scholar 

  29. Eeuwens CJ (1976) Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol Plant 36:23–28

    CAS  Article  Google Scholar 

  30. Eeuwens CJ, Blake J (1977) Culture of coconut and date palm tissue with a view to vegetative propagation. Acta Hort 78:277–286

    Article  Google Scholar 

  31. Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8(2):155–168. doi:10.1105/tpc.8.2.155

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  32. FAOSTAT (2013) Food and Agriculture Organization of the United Nations - World coconut harvested areas in 2013 http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 22/11/2014

  33. Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org 74:201–228. doi:10.1023/A:1024033216561

    Article  Google Scholar 

  34. Fernando SC, Gamage CKA (2000) Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci 151:193–198. doi:10.1016/S0168-9452(99)00218-6

    CAS  PubMed  Article  Google Scholar 

  35. Fernando SC, Verdeil JL, Hocher V, Weerakoon LK, Hirimburegama K (2003) Histological analysis of plant regeneration from plumule explants of Cocos nucifera. Plant Cell Tiss Org 72:281–283. doi:10.1023/A:1022345011002

    Article  Google Scholar 

  36. Fernando SC, Vidhanaarachchi VRM, Weerakoon LK, Santha ES (2010) What makes clonal propagation of coconut difficult? AsPac J Mol Biol Biotechnol 18:163–165

    Google Scholar 

  37. Foale M (2003) The coconut odyssey: the bounteous possibilities of the tree of life. ACIAR Monography No. 101. Canberra

  38. Fuentes G, Talavera C, Desjardins Y, Santamaria JM (2005a) High irradiance can minimize the negative effect of exogenous sucrose on photosynthetic capacity of in vitro grown coconut plantlets. Biol Plant 49:7–15

    CAS  Article  Google Scholar 

  39. Fuentes G, Talavera C, Oropeza C, Desjardins Y, Santamaría JM (2005b) Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In Vitro Cell Dev Plant 41:69–76

    CAS  Article  Google Scholar 

  40. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    CAS  PubMed  Article  Google Scholar 

  41. Grout BWW, Shelton K, Pritchard HW (1983) Orthodox behavior of oil palm seed and cryopreservation of the excised embryo for genetic conservation. Ann Bot 52:381–384

    Google Scholar 

  42. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204(495):497. doi:10.1038/204497a0

    Article  Google Scholar 

  43. Gupta PK, Kendurkar SV, Kulkarni VM, Shirgurkar MV, Mascarenhas AF (1984) Somatic embryogenesis and plants from zygotic embryos of coconut (Cocos nucifera L.) in vitro. Plant Cell Rep 3:222–225

    CAS  PubMed  Article  Google Scholar 

  44. Harrison NA, Jones P (2003) Diseases of coconut. Diseases of tropical fruit crops. CABI Publishing, 44 Brattle Street, 4th Floor, Cambridge, MA, 02138, USA. doi:10.1079/9780851993904.0197

  45. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  46. Hornung R, Domas R, Lynch PT (2001) Cryopreservation of plumular explants of coconut (Cocos nucifera L.) to support programmes for mass clonal propagation through somatic embryogenesis. CryoLett 22:211–220

    CAS  Google Scholar 

  47. Karunaratne S, Periyapperuma K (1989) Culture of immature embryos of coconut, Cocos nucifera L.: callus proliferation and somatic embryogenesis. Plant Sci 62:247–253

    Article  Google Scholar 

  48. Karunaratne S, Gamage C, Kovoor A (1991) Leaf maturity, a critical factor in embryogenesis. J Plant Physiol 139:27–31

    Article  Google Scholar 

  49. Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plants. An introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled Haploid Production in Crop Plants. Springer Netherlands, pp 1–4. doi:10.1007/978-94-017-1293-4_1

  50. Keller WA, Rajhathy T, Lacapra J (1975) In vitro production of plants from pollen in Brassica campestris. Can J Genet Cytol 17:655–665

    CAS  Article  Google Scholar 

  51. Kim HU, Jung S-J, Lee K-R, Kim EH, Lee S-M, Roh KH, Kim J-B (2013) Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues. FEBS open bio 4:25–32. doi:10.1016/j.fob.2013.11.003

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  52. Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73. doi:10.1038/327070a0

    CAS  Article  Google Scholar 

  53. Koschek PR, Alviano DS, Alviano CS, Gattass CR (2007) The husk fiber of Cocos nucifera L. (Palmae) is a source of anti-neoplastic activity. Brazilian J Med Biol Res 40:1339–1343. doi:10.1590/s0100-879x2006005000153

    CAS  Article  Google Scholar 

  54. Kumar PP, Raju CR, Chandramohan M, Iyer RD (1985) Induction and maintenance of friable callus from the cellular endosperm of Cocos nucifera L. Plant Sci 40:203–207

    CAS  Article  Google Scholar 

  55. Lee RF (2013) Cadang-cadang disease of palm and other diseases. Phytopathol 103:177–178

    Google Scholar 

  56. Lim TK (2012) Cocos nucifera. In: Lim TK (ed) Edible medicinal and non-medicinal plants. Springer-Verlag Berlin, Berlin, pp 301–334. doi:10.1007/978-90-481-8661-7_45

  57. Lopez-Villalobos A (2002) Roles of lipids in coconut (Cocos nucifera L.) embryogenesis. University of London,

  58. López-Villalobos A, Dodds PF, Hornung R (2001) Changes in fatty acid composition during development of tissues of coconut (Cocos nucifera L.) embryos in the intact nut and in vitro. J Exp Bot 52:933–942

    PubMed  Article  Google Scholar 

  59. López-Villalobos A, Hornung R, Dodds PF (2004) Hydrophobic metabolites of 2,4-dichlorophenoxyacetic acid (2,4-D) in cultured coconut tissue. Phytochem 65:2763–2774. doi:10.1016/j.phytochem.2004.08.034

    Article  CAS  Google Scholar 

  60. López-Villalobos A, Dodds PF, Hornung R (2011) Lauric acid improves the growth of zygotic coconut (Cocos nucifera L.) embryos in vitro. Plant Cell Tiss Org 106:317–327. doi:10.1007/s11240-011-9924-8

    Article  CAS  Google Scholar 

  61. Magnaval C, Noirot M, Verdeil JL, Blattes A, Huet C, Grosdemange F, Buffardmorel J (1995) Free amino acid composition of coconut (Cocos nucifera L.) calli under somatic embryogenesis induction conditions. J Plant Physiol 146:155–161

    CAS  Article  Google Scholar 

  62. Marina AM, Man YBC, Nazimah SAH, Amin I (2009) Antioxidant capacity and phenolic acids of virgin coconut oil. Int J Food Sci Nutr 60:114–123. doi:10.1080/09637480802549127

    CAS  PubMed  Article  Google Scholar 

  63. Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129–131. doi:10.1038/277129a0

    Article  Google Scholar 

  64. McWilliam AA, Smith SM, Street HE (1974) Origin and development of embryoids in suspension cultures of carrot (Daucus carota). Ann Bot 38:243–250

    Google Scholar 

  65. Miyashima S, Honda M, Hashimoto K, Tatematsu K, Hashimoto T, Sato-Nara K, Okada K, Nakajima K (2013) A comprehensive expression analysis of the Arabidopsis MICRORNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function. Plant Cell Physiol 54:375–384. doi:10.1093/pcp/pcs188

    CAS  PubMed  Article  Google Scholar 

  66. Monfort S (1985) Androgenesis of coconut: embryos from anther culture. J Plant Breed 94:251–254

    Google Scholar 

  67. Monnier M (1973) Successful growth and development of globular embryos of Capsella bursa-pastoris cultivated in vitro using a new mineral solution. Memoires Societe Botanique de France:179–195

  68. Montero-Cortes M, Rodriguez-Paredes F, Burgeff C, Perez-Nunez T, Cordova I, Oropeza C, Verdeil J-L, Sáenz L (2010a) Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tiss Org 102:251–258. doi:10.1007/s11240-010-9714-8

    CAS  Article  Google Scholar 

  69. Montero-Cortes M, Saenz L, Cordova I, Quiroz A, Verdeil JL, Oropeza C (2010b) GA3 stimulates the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera (L.). Plant Cell Rep 29(9):1049–1059. doi:10.1007/s00299-010-0890-0

    CAS  PubMed  Article  Google Scholar 

  70. Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38:141–143. doi:10.2307/2437837

    CAS  Article  Google Scholar 

  71. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    CAS  Article  Google Scholar 

  72. N’Nan O, Borges M, Konan JLK, Hocher V, Verdeil JL, Tregear J, N’guetta ASP, Engelmann F, Malaurie B (2012) A simple protocol for cryopreservation of zygotic embryos of ten accessions of coconut (Cocos nucifera L.). In Vitro Cell Dev Plant 48:160–166. doi:10.1007/s11627-012-9425-4

    Article  Google Scholar 

  73. Nitsch JP (1969) Experimental androgenesis in Nicotiana. Phytomorphol 19:389–404

    Google Scholar 

  74. N’Nan O, Hocher V, Verdeil JL, Konan JL, Ballo K, Mondeil F, Malaurie B (2008) Cryopreservation by encapsulation-dehydration of plumules of coconut (Cocos nucifera L.). CryoLett 29:339–350

    Google Scholar 

  75. Pan MJ, van Staden J (1998) The use of charcoal in in vitro culture - a review. Plant Growth Regul 26:155–163. doi:10.1023/a:1006119015972

    CAS  Article  Google Scholar 

  76. Pandey DK, Chaudhary B (2014) Oxidative stress responsive SERK1 gene directs the progression of somatic embryogenesis in cotton (Gossypium hirsutum L. cv. Coker 310). Amer J Plant Sciences 5:80–102. doi:10.4236/ajps.2014.51012

    CAS  Article  Google Scholar 

  77. Pannetier C, Buffard-Morel J (1982) Production of somatic embryos from leaf tissues of coconut, Cocos nucifera L. In: Proceedings of the 5th International Plant Tissue Culture Congress, Tokyo, Japan

  78. Pech y Aké AE, Souza R, Maust B, Santamaría JM, Oropeza C (2004) Enhanced aerobic respiration improves in vitro coconut embryo germination and culture. In Vitro Cell Dev Plant 40:90–94. doi:10.1079/ivp2003480

    Article  Google Scholar 

  79. Pech y Aké AE, Maust B, Orozco-Segovia A, Oropeza C (2007) The effect of gibberellic acid on the in vitro germination of coconut zygotic embryos and their conversion into plantlets. In Vitro Cell Dev Plant 43:247–253

    Article  CAS  Google Scholar 

  80. Perera PI, Hocher V, Verdeil JL, Doulbeau S, Yakandawala DM, Weerakoon LK (2007a) Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis. Plant Cell Rep 26:21–28. doi:10.1007/s00299-006-0216-4

    CAS  PubMed  Article  Google Scholar 

  81. Perera PIP, Hocher V, Verdeil JL, Yakandawala DMD, Weerakoon LK (2007b) Recent advances in anther culture of coconut (Cocos nucifera L.). In: Xu Z (ed) Biotechnology and Sustainable Agriculture 2006 and Beyond. Springer, pp 451–455

  82. Perera PIP, Hocher V, Verdeil JL, Bandupriya HDD, Yakandawala DMD, Weerakoon LK (2008a) Androgenic potential in coconut (Cocos nucifera L.). Plant Cell Tiss Org 92:293–302. doi:10.1007/s11240-008-9337-5

    CAS  Article  Google Scholar 

  83. Perera PIP, Perera L, Hocher V, Verdeil JL, Yakandawala DM, Weerakoon LK (2008b) Use of SSR markers to determine the anther-derived homozygous lines in coconut. Plant Cell Rep 27:1697–1703. doi:10.1007/s00299-008-0592-z

    CAS  PubMed  Article  Google Scholar 

  84. Perera L, Perera SACN, Bandaranayake CK, Harries HC (2009a) Coconut. In: Vollmann J, Rajcan I (eds) Oil Crops, vol 4. Springer, New York, pp 369–396. doi:10.1007/978-0-387-77594-4_12

  85. Perera PIP, Vidhanaarachchi VRM, Gunathilake TR, Yakandawala DMD, Hocher V, Verdeil JL, Weerakoon LK (2009b) Effect of plant growth regulators on ovary culture of coconut (Cocos nucifera L.). Plant Cell Tiss Org 99:73–81. doi:10.1007/s11240-009-9577-z

    CAS  Article  Google Scholar 

  86. Perera PIP, Yakandawala DMD, Hocher V, Verdeil JL, Weerakoon LK (2009c) Effect of growth regulators on microspore embryogenesis in coconut anthers. Plant Cell Tiss Org 96:171–180. doi:10.1007/s11240-008-9473-y

    CAS  Article  Google Scholar 

  87. Pérez-Núñez MT, Chan JL, Sáenz L, González T, Verdeil JL, Oropeza C (2006) Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cell Dev Plant 42:37–43. doi:10.1079/ivp2005722

    Article  Google Scholar 

  88. Pérez-Núñez MT, Souza R, Saenz L, Chan JL, Zuniga-Aguilar JJ, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19. doi:10.1007/s00299-008-0616-8

    PubMed  Article  CAS  Google Scholar 

  89. Picard E, Buyser Jd (1972) Haploid seedlings of Triticum aestivum L. obtained by in vitro anther culture. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, D 277:1463–1466

    Google Scholar 

  90. Reinert J (1959) Über die kontrolle der morphogenese und die induktion von adventivembryonen an gewebekulturen aus karotten. Planta 53(4):318–333. doi:10.1007/BF01881795

    Article  Google Scholar 

  91. Rethinam P (2006) Asian and Pacific coconut community activities, achievements and future outlook. ACIAR Proceedings Series 125:15–21

    Google Scholar 

  92. Rillo EP (1998) PCA’s embryo culture technique in the mass production of Makapuno coconuts. In: Batugal PA, Engelmann F (eds) Coconut embryo in vitro culture: Part I. Proceedings of the first workshop on embryo culture, Banao, Guinobatan, Albay, Philippines, 27-31 October 1997. International Plant Genetic Resources Institute (IPGRI), Rome, pp 69–78

  93. Rillo EP, Paloma MBF (1991) Storage and transport of zygotic embryos of Cocos nucifera L. for in vitro culture. Plant Genet Resources Newslett 86:1–4

    Google Scholar 

  94. Rillo EP, Cueto CA, Medes WR, Areza-Ubaldo MB (2002) Development of an improved embryo culture protocol for coconut in the Philippines. In: Engelmann F, Batugal P, Oliver J (eds) Coconut embryo in vitro culture: part II. Proceedings of second international on embryo culture workshop, Mérida, Yucatán, Mexico, 14-17 March 2000. International Plant Genetic Resources Institute (IPGRI), Rome, pp 41–65

  95. Ross IA (2005) Cocos nucifera L. In: Ross IA (ed) Medicinal Plants of the World, Vol 3. Humana Press, pp 117–154. doi:10.1007/978-1-59259-887-8_3

  96. Sáenz L, Herrera-Herrera G, Uicab-Ballote F, Chan JL, Oropeza C (2009) Influence of form of activated charcoal on embryogenic callus formation in coconut (Cocos nucifera). Plant Cell Tiss Org 100:301–308. doi:10.1007/s11240-009-9651-6

    Article  Google Scholar 

  97. Sajini KK, Karun A, Amarnath CH, Engelmann F (2011) Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos by vitrification. CryoLett 32:317–328

    CAS  Google Scholar 

  98. Samosir YMS (1999) Optimisation of somatic embryogenesis in coconut (Cocos nucifera L.). PhD Thesis, The University of Queensland, Australia,

  99. Samosir YMS, Adkins SW (2004) Embryo transplantation and ex vitro germination for germplasm exchange and the production of high value, endosperm mutant coconuts. In: Peiris TSG, Ranasinghe CS (eds) Proceedings of the International Conference of the Coconut Research Institute of Sri Lanka: Part II. The Coconut Research Institute of Sri Lanka, Lunuwila, Sri Lanka, pp 92–102

    Google Scholar 

  100. Samosir YMS, Adkins SW (2014) Improving acclimatization through the photoautotrophic culture of coconut (Cocos nucifera) seedlings: an in vitro system for the efficient exchange of germplasm. In Vitro Cell Dev Plant 50:493–501. doi:10.1007/s11627-014-9599-z

    CAS  Article  Google Scholar 

  101. Samosir YMS, Godwin ID, Adkins SW (1998) An improved protocol for somatic embryogenesis in coconut (Cocos nucifera L.). In: Drew RA (ed) Proceedings of the international symposium of biotechnology in tropical and subtropical species, vol 461. Australia, Brisbane, pp 467–475

    Google Scholar 

  102. Samosir YMS, Godwin ID, Adkins SW (1999) The use of osmotically active agents and abscisic acid can optimise the maturation of coconut somatic embryos. In: Oropeza C (ed) Current advances in coconut biotechnology. CAB International, UK, pp 341–354

    Chapter  Google Scholar 

  103. Santos MD, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Aragao FJL (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168:723–729. doi:10.1016/j.plantsci.2004.10.004

    CAS  Article  Google Scholar 

  104. Schmidt EDL, Guzzo F, Toonen MAJ, deVries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  105. Sisunandar S, Rival A, Turquay P, Samosir Y, Adkins SW (2010a) Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Planta 232:435–447. doi:10.1007/s00425-010-1186-x

    CAS  PubMed  Article  Google Scholar 

  106. Sisunandar S, Sopade PA, Samosir YM, Rival A, Adkins SW (2010b) Dehydration improves cryopreservation of coconut (Cocos nucifera L.). Cryobiol 61:289–296. doi:10.1016/j.cryobiol.2010.09.007

    CAS  Article  Google Scholar 

  107. Sisunandar S, Sopade PA, Samosir YMS, Rival A, Adkins SW (2012) Conservation of coconut (Cocos nucifera L.) germplasm at sub-zero temperature. CryoLett 33:465–475

    CAS  Google Scholar 

  108. Sisunandar S, Novarianto H, Mashud N, Samosir YMS, Adkins SW (2014) Embryo maturity plays an important role for the successful cryopreservation of coconut (Cocos nucifera). In Vitro Cell Dev Plant 50:688–695. doi:10.1007/s11627-014-9633-1

    Article  Google Scholar 

  109. Skoog F, Tsui C (1948) Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am J Bot 35:782–787. doi:10.2307/2438159

    CAS  Article  Google Scholar 

  110. Smertenko A, Bozhkov PV (2014) Somatic embryogenesis: life and death processes during apicalbasal patterning. J Exp Bot 65:1343–1360. doi:10.1093/jxb/eru005

    CAS  PubMed  Article  Google Scholar 

  111. Steinmacher DA, Saldanha CW, Clement CR, Guerra MP (2007) Cryopreservation of peach palm zygotic embryos. Cryolett 28:13–22

    Google Scholar 

  112. Steinmacher DA, Guerra MP, Saare-Surminski K, Lieberei R (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108(8):1463–1475. doi:10.1093/aob/mcr033

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  113. Steward FC (1958) Growth and organized development of cultured cells. III. Interpretations of the growth from free cell to carrot plant. Am J Bot 45:709–713. doi:10.2307/2439729

    Article  Google Scholar 

  114. Steward FC, Marion OM, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45(10):705–708. doi:10.2307/2439728

    Article  Google Scholar 

  115. Talavera C, Contreras F, Espadas F, Fuentes G, Santamaría JM (2005) Cultivating in vitro coconut palms (Cocos nucifera) under glasshouse conditions with natural light, improves in vitro photosynthesis nursery survival and growth. Plant Cell Tiss Org 83:287–292. doi:10.1007/s11240-005-7052-z

    CAS  Article  Google Scholar 

  116. Teixeira JB, Sondahl MR, Nakamura T, Kirby EG (1995) Establishment of oil palm cell suspensions and plant regeneration. Plant Cell Tiss Org 40(2):105–111. doi:10.1007/bf00037662

    Article  Google Scholar 

  117. Thanh-Tuyen NT, De Guzman EV (1983) Formation of pollen embryos in cultured anthers of coconut (Cocos nucifera L.). Plant Sci Lett 29:81–88

    Article  Google Scholar 

  118. Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42:35–42. doi:10.1016/j.plaphy.2003.10.008

    CAS  PubMed  Article  Google Scholar 

  119. Tisserat B, Vandercook CE (1985) Development of an automated plant culture system. Plant Cell Tiss Org 5:107–117. doi:10.1007/bf00040307

    Article  Google Scholar 

  120. Triques K, Rival A, Beule T, Puard M, Roy J, Nato A, Lavergne D, Havaux M, Verdeil JL, Sangare A, Hamon S (1997) Photosynthetic ability of in vitro grown coconut (Cocos nucifera L.) plantlets derived from zygotic embryos. Plant Sci 127:39–51

    CAS  Article  Google Scholar 

  121. Triques K, Rival A, Beule T, Morcillo F, Hocher V, Verdeil JL, Hamon S (1998) Changes in photosynthetic parameters during in vitro growth and subsequent acclimatization of coconut (Cocos nucifera L.) zygotic embryos. In: Drew RA (ed) Proceedings of the international sympodium of biotechnology in tropical and subtropical species, vol 461. Acta Hort. (ISHS), pp 275–284

  122. Tsuwamoto R, Yokoi S, Takahata Y (2010) Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol 73:481–492. doi:10.1007/s11103-010-9634-3

    CAS  PubMed  Article  Google Scholar 

  123. Umehara M, Ogita S, Sasamoto H, Koshino H, Nakamura T, Asami T, Yoshida S, Kamada H (2007) Identification of a factor that complementarily inhibits somatic embryogenesis with vanillyl benzyl ether in Japanese larch. Vitro Cell Dev Plant 43(3):203–208. doi:10.1007/s11627-006-9016-3

    CAS  Article  Google Scholar 

  124. Vasil V, Hildebrandt AC (1965a) Differentiation of tobacco plants from single isolated cells in microcultures. Science 150:889–892. doi:10.1126/science.150.3698.889

    CAS  PubMed  Article  Google Scholar 

  125. Vasil V, Hildebrandt AC (1965b) Growth and tissue formation from single isolated tobacco cells in microculture. Science 147:1454–1455. doi:10.1126/science.147.3664.1454

    CAS  PubMed  Article  Google Scholar 

  126. Verdeil JL, Huet C, Grosdemange F, Buffard-Morel J (1994) Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep 13:218–221

    CAS  PubMed  Google Scholar 

  127. Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferrière N, Nicole M (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18. doi:10.1006/anbo.2001.1408

    Article  Google Scholar 

  128. White PR (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 26:59–64. doi:10.2307/2436709

    Article  Google Scholar 

  129. White PR (1943) A handbook of plant tissue culture. The Jaques Cattell Press, Lancaster, Pennsylvania

    Book  Google Scholar 

  130. Wildwater M, Campilho A, Perez-Perez JM, Heidstra R, Blilou I, Korthout H, Chatterjee J, Mariconti L, Gruissem W, Scheres B (2005) The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123:1337–1349. doi:10.1016/j.cell.2005.09.042

    CAS  PubMed  Article  Google Scholar 

  131. Zhu ZC, Wu HS (1979) Production of haploid plantlets from unpollinated ovaries of Triticum aestivum and Nicotiana tabacum. Acta Genet Sin 6:181–183

    Google Scholar 

  132. Zuo JR, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359. doi:10.1046/j.1365-313X.2002.01289.x

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Australian Agency for International Development (AusAID) for a scholarship awarded to Quang Thien Nguyen. We thank Australian Centre for International Agricultural Research (ACIAR) for financial support. We also acknowledge the independent reviews from Professor Jeffrey Adelberg (Clemson University, USA) and Dr. Yohannes M. S. Samosir (Bakrie Agriculture Research Institute, Indonesia).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Quang Thien Nguyen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, Q.T., Bandupriya, H.D.D., López-Villalobos, A. et al. Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta 242, 1059–1076 (2015). https://doi.org/10.1007/s00425-015-2362-9

Download citation

Keywords

  • Biotechnology
  • Coconut
  • Cryopreservation
  • Embryo culture
  • Germplasm conservation
  • Somatic embryogenesis