Skip to main content
Log in

Biotic stress-induced expression of mulberry cystatins and identification of cystatin exhibiting stability to silkworm gut proteinases

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Biotic stresses induce the expression of mulberry cystatins. MaCPI-4 protein is stable in silkworm digestive fluid and accumulates in gut food debris and frass.

Plant cystatins are considered to be involved in defense responses to insect herbivores though little is known about how cystatins from the natural host respond to a specialist herbivory and the following postingestive interaction is also poorly understood. Here, we studied the biotic stress-mediated inductions of cystatins from mulberry tree, and examined the stability of mulberry cystatin proteins in the gut of silkworm, Bombyx mori, a specialist insect feeding on mulberry leaf. First, we cloned and characterized six cystatin genes from a mulberry cultivar, Morus atropurpurea Roxb., named as MaCPI-1 to MaCPI-6. The recombinant MaCPI-1, MaCPI-3 and MaCPI-4 proteins, which showed inhibitory effects against papain in vitro, were produced. Silkworm herbivory as well as methyl jasmonate (MeJA) treatment induced the expression of five mulberry cystatin genes, and the highest inductions were observed from MaCPI-1 and MaCPI-6. Mechanical wounding led to the inductions of four cystatin genes. The differential induction occurred in MaCPI-2. The induced protein changes were detected from three mulberry cystatins comprising MaCPI-1, MaCPI-3 and MaCPI-4. In vivo and in vitro assays showed that MaCPI-1 and MaCPI-3 proteins were susceptible to silkworm digestive fluid and MaCPI-4 had an antidigestive stability, and was detected in silkworm gut and frass. Collectively, our data indicated that biotic stresses resulted in the transcriptional inductions and protein changes of mulberry cystatins (MaCPIs), and identified MaCPI-4 with stability in the gut of its specialist herbivore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CPI:

Cysteine proteinase inhibitor

MeJA:

Methyl jasmonate

PhyCys:

Phytocystatins

PMSF:

Phenylmethylsulfonyl fluoride

References

  • Arai S, Matsumoto I, Emori Y, Abe K (2002) Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J Agric Food Chem 50:6612–6617

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta 1734:91–111

    Article  CAS  PubMed  Google Scholar 

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res 13:135–142

    Article  CAS  PubMed  Google Scholar 

  • Ballare CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16:249–257

    Article  CAS  PubMed  Google Scholar 

  • Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Polticelli F, Ascenzi P, Delledonne M (2003) AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur J Biochem 270:2593–2604

    Article  CAS  PubMed  Google Scholar 

  • Benchabane M, Schluter U, Vorster J, Goulet MC, Michaud D (2010) Plant cystatins. Biochimie 92:1657–1666

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bolter CJ (1993) Methyl jasmonate induces papain inhibitor(s) in tomato leaves. Plant Physiol 103:1347–1353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonaventure G, VanDoorn A, Baldwin IT (2011) Herbivore-associated elicitors: fAC signaling and metabolism. Trends Plant Sci 16:294–299

    Article  CAS  PubMed  Google Scholar 

  • Botella MA, Xu Y, Prabha TN, Zhao Y, Narasimhan ML, Wilson KA, Nielsen SS, Bressan RA, Hasegawa PM (1996) Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol 112:1201–1210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bricchi I, Leitner M, Foti M, Mithofer A, Boland W, Maffei ME (2010) Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.). Planta 232:719–729

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102:19237–19242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen H, Gonzales-Vigil E, Wilkerson CG, Howe GA (2007) Stability of plant defense proteins in the gut of insect herbivores. Plant Physiol 143:1954–1967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  CAS  PubMed  Google Scholar 

  • Corr-Menguy F, Cejudo FJ, Mazubert C, Vidal J, Lelandais-Briere C, Torres G, Rode A, Hartmann C (2002) Characterization of the expression of a wheat cystatin gene during caryopsis development. Plant Mol Biol 50:687–698

    Article  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto

    Google Scholar 

  • Duan XL, Li XG, Xue QZ, AboElSaad M, Xu DP, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14:494–498

    Article  CAS  PubMed  Google Scholar 

  • Duceppe MO, Cloutier C, Michaud D (2012) Wounding, insect chewing and phloem sap feeding differentially alter the leaf proteome of potato. Solanum tuberosum L. Proteome Sci 10:73

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed Central  PubMed  Google Scholar 

  • Edgar RC (2004b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Felton GW, Tumlinson JH (2008) Plant-insect dialogs: complex interactions at the plant-insect interface. Curr Opin Plant Biol 11:457–463

    Article  CAS  PubMed  Google Scholar 

  • Girard C, Rivard D, Kiggundu A, Kunert K, Gleddie SC, Cloutier C, Michaud D (2007) A multicomponent, elicitor-inducible cystatin complex in tomato, Solanum lycopersicum. New Phytol 173:841–851

    Article  CAS  PubMed  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Nissen MS, Kumar GN, Knowles NR, Kang C (2013) Characterization of Solanum tuberosum multicystatin and the significance of core domains. Plant Cell 25:5043–5052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He N, Zhang C, Qi X, Zhao S, Tao Y, Yang G, Lee TH, Wang X, Cai Q, Li D, Lu M, Liao S, Luo G, He R, Tan X, Xu Y, Li T, Zhao A, Jia L, Fu Q, Zeng Q, Gao C, Ma B, Liang J, Wang X, Shang J, Song P, Wu H, Fan L, Wang Q, Shuai Q, Zhu J, Wei C, Zhu-Salzman K, Jin D, Wang J, Liu T, Yu M, Tang C, Wang Z, Dai F, Chen J, Liu Y, Zhao S, Lin T, Zhang S, Wang J, Wang J, Yang H, Yang G, Wang J, Paterson AH, Xia Q, Ji D, Xiang Z (2013) Draft genome sequence of the mulberry tree Morus notabilis. Nat Commun 4:2445

    Article  PubMed Central  PubMed  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2013) Nicotiana attenuata MPK4 suppresses a novel jasmonic acid (JA) signaling-independent defense pathway against the specialist insect Manduca sexta, but is not required for the resistance to the generalist Spodoptera littoralis. New Phytol 199:787–799

    Article  CAS  PubMed  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163

    Article  CAS  Google Scholar 

  • Jacinto T, Fernandes KVS, Machado OLT, Siqueira-Junior CL (1998) Leaves of transgenic tomato plants overexpressing prosystemin accumulate high levels of cystatin. Plant Sci 138:35–42

    Article  CAS  Google Scholar 

  • Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci USA 86:9871–9875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katsir L, Chung HS, Koo AJ, Howe GA (2008) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11:428–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiyosaki T, Matsumoto I, Asakura T, Funaki J, Kuroda M, Misaka T, Arai S, Abe K (2007) Gliadain, a gibberellin-inducible cysteine proteinase occurring in germinating seeds of wheat, Triticum aestivum L., specifically digests gliadin and is regulated by intrinsic cystatins. FEBS J 274:1908–1917

    Article  CAS  PubMed  Google Scholar 

  • Margis R, Reis EM, Villeret V (1998) Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys 359:24–30

    Article  CAS  PubMed  Google Scholar 

  • Martinez M, Abraham Z, Carbonero P, Diaz I (2005) Comparative phylogenetic analysis of cystatin gene families from Arabidopsis, rice and barley. Mol Genet Genomics 273:423–432

    Article  CAS  PubMed  Google Scholar 

  • Martinez M, Diaz-Mendoza M, Carrillo L, Diaz I (2007) Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett 581:2914–2918

    Article  CAS  PubMed  Google Scholar 

  • Martinez M, Cambra I, Carrillo L, Diaz-Mendoza M, Diaz I (2009) Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiol 151:1531–1545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mcmanus MT, White DWR, Mcgregor PG (1994) Accumulation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests. Transgenic Res 3:50–58

    Article  CAS  Google Scholar 

  • Michaud D, Cantin L, Bonade-Bottino M, Jouanin L, Vrain TC (1996) Identification of stable plant cystatin/nematode proteinase complexes using mildly denaturing gelatin/polyacrylamide gel electrophoresis. Electrophoresis 17:1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Mithofer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168

    Article  PubMed Central  PubMed  Google Scholar 

  • Nagaraju J, Abraham EG (1995) Purification and characterization of digestive amylase from the tasar Silkworm, Antheraea mylitta (Lepidoptera, Saturniidae). Comp Biochem Physiol B: Biochem Mol Biol 110:201–209

    Article  Google Scholar 

  • Nagata K, Kudo N, Abe K, Arai S, Tanokura M (2000) Three-dimensional solution structure of oryzacystatin-I, a cysteine proteinase inhibitor of the rice, Oryza sativa L. japonica. Biochemistry 39:14753–14760

    Article  CAS  PubMed  Google Scholar 

  • Nissen MS, Kumar GN, Youn B, Knowles DB, Lam KS, Ballinger WJ, Knowles NR, Kang C (2009) Characterization of Solanum tuberosum multicystatin and its structural comparison with other cystatins. Plant Cell 21:861–875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peitsch MC (1996) ProMod and Swiss-Model: internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24:274–279

    Article  CAS  PubMed  Google Scholar 

  • Pernas M, Sanchez-Monge R, Gomez L, Salcedo G (1998) A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests. Plant Mol Biol 38:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Pernas M, Sanchez-Mong R, Salcedo G (2000) Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Lett 467:206–210

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42:D503–D509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ribeiro APO, Pereira EJG, Galvan TL, Picanco MC, Picoli EAT, da Silva DJH, Fari MG, Otoni WC (2006) Effect of eggplant transformed with oryzacystatin gene on Myzus persicae and Macrosiphum euphorbiae. J Appl Entomol 130:84–90

    Article  CAS  Google Scholar 

  • Santamaria ME, Diaz-Mendoza M, Diaz I, Martinez M (2014) Plant protein peptidase inhibitors: an evolutionary overview based on comparative genomics. BMC Genom 15:812

    Article  Google Scholar 

  • Schafer M, Fischer C, Meldau S, Seebald E, Oelmuller R, Baldwin IT (2011) Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol 156:1520–1534

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH 3rd, Teal PE (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci USA 106:653–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steppuhn A, Baldwin IT (2007) Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecol Lett 10:499–511

    Article  PubMed  Google Scholar 

  • Stubbs MT, Laber B, Bode W, Huber R, Jerala R, Lenarcic B, Turk V (1990) The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J 9:1939–1947

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14(Suppl):S153–S164

    PubMed Central  CAS  PubMed  Google Scholar 

  • van der Hoorn RA (2008) Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59:191–223

    Article  PubMed  Google Scholar 

  • Waldron C, Wegrich LM, Merlo PA, Walsh TA (1993) Characterization of a genomic sequence coding for potato multicystatin, an eight-domain cysteine proteinase inhibitor. Plant Mol Biol 23:801–812

    Article  CAS  PubMed  Google Scholar 

  • Weeda SM, Mohan Kumar GN, Richard Knowles N (2009) Developmentally linked changes in proteases and protease inhibitors suggest a role for potato multicystatin in regulating protein content of potato tubers. Planta 230:73–84

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Haard NF (2000) Purification and characterization of a cystatin from the leaves of methyl jasmonate treated tomato plants. Comp Biochem Physiol C: Toxicol Pharmacol 127:209–220

    CAS  Google Scholar 

  • Zavala JA, Patankar AG, Gase K, Hui DQ, Baldwin IT (2004) Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiol 134:1181–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by the research grants from the National Hi-Tech Research and Development Program of China (No. 2013AA100605-3), Natural Science Foundation of China (No. 31300228), China Postdoctoral Science Foundation funded projects (No. 2013M540694 and No. 2014T70845), the Fundamental Research Funds for the Central Universities (No.2362014xk05), and the “111” Project (B12006).

Conflict of interest

We declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningjia He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Wang, Y., Ding, G. et al. Biotic stress-induced expression of mulberry cystatins and identification of cystatin exhibiting stability to silkworm gut proteinases. Planta 242, 1139–1151 (2015). https://doi.org/10.1007/s00425-015-2345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2345-x

Keywords

Navigation