Spontaneous mutations of the UDP-glucose:flavonoid 3-O-glucosyltransferase gene confers pale- and dull-colored flowers in the Japanese and common morning glories

Abstract

Main conclusion

UDP-glucose:flavonoid 3- O -glucosyltransferase is essential for maintaining proper production quantity, acylation, and glucosylation of anthocyanin, and defects cause pale and dull flower pigmentation in morning glories.

The Japanese (Ipomoea nil) and the common (I. purpurea) morning glory display bright blue and dark purple flowers, respectively. These flowers contain acylated and glucosylated anthocyanin pigments, and a number of flower color mutants have been isolated in I. nil. Of these, the duskish mutants of I. nil produce pale- and dull-colored flowers. We found that the Duskish gene encodes UDP-glucose:flavonoid 3-O-glucosyltransferase (3GT). The duskish-1 mutation is a frameshift mutation caused by a 4-bp insertion, and duskish-2 is an insertion of a DNA transposon, Tpn10, at 1.3 kb upstream of the 3GT start codon. In the duskish-2 mutant, excision of Tpn10 is responsible for restoration of the expression of the 3GT gene. The recombinant 3GT protein displays expected 3GT enzymatic activities to catalyze 3-O-glucosylation of anthocyanidins in vitro. Anthocyanin analysis of a duskish-2 mutant and its germinal revertant showing pale and normal pigmented flowers, respectively, revealed that the mutation caused around 80 % reduction of anthocyanin accumulation. We further characterized two I. purpurea mutants showing pale brownish-red flowers, and found that they carry the same frameshift mutation in the 3GT gene. Most of the flower anthocyanins in the mutants were previously found to be anthocyanidin 3-O-glucosides lacking several caffeic acid and glucose moieties that are attached to the anthocyanins in the wild-type plants. These results indicated that 3GT is essential not only for production, but also for proper acylation and glucosylation, of anthocyanin in the morning glories.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

3GT:

UDP-glucose:flavonoid 3-O-glucosyltransferase

5GT:

Anthocyanin 5-O-glucosyltransferase

F3′H:

Flavonoid 3′-hydroxylase

qRT-PCR:

Quantitative reverse transcription-PCR

TKS:

Tokyo-kokei standard

References

  1. Behm-Ansmant I, Kashima I, Rehwinkel J, Sauliere J, Wittkopp N, Izaurralde E (2007) mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett 581:2845–2853

    CAS  Article  PubMed  Google Scholar 

  2. Chang SM, Lu Y, Rausher MD (2005) Neutral evolution of the nonbinding region of the anthocyanin regulatory gene Ipmyb1 in Ipomoea. Genetics 170:1967–1978

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  3. Chen WH, Hsu CY, Cheng HY, Chang H, Chen HH, Ger MJ (2011) Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Rep 30:1007–1017

    CAS  Article  PubMed  Google Scholar 

  4. Chopra S, Hoshino A, Boddu J, Iida S (2006) Flavonoid pigments as tools in molecular genetics. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 147–173

    Chapter  Google Scholar 

  5. Conti E, Izaurralde E (2005) Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol 17:316–325

    CAS  Article  PubMed  Google Scholar 

  6. Dooner HK, Nelson OE (1977) Genetic control of UDPglucose:flavonol 3-O-glucosyltransferase in the endosperm of maize. Biochem Genet 15:509–519

    CAS  Article  PubMed  Google Scholar 

  7. Fedoroff NV, Furtek DB, Nelson OE (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci USA 81:3825–3829

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  8. Fukada-Tanaka S, Inagaki Y, Yamaguchi T, Saito N, Iida S (2000) Colour-enhancing protein in blue petals. Nature 407:581

    CAS  Article  PubMed  Google Scholar 

  9. Fukuchi-Mizutani M, Okuhara H, Fukui Y, Nakao M, Katsumoto Y, Yonekura-Sakakibara K, Kusumi T, Hase T, Tanaka Y (2003) Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3′-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol 132:1652–1663

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. Habu Y, Hisatomi Y, Iida S (1998) Molecular characterization of the mutable flaked allele for flower variegation in the common morning glory. Plant J 16:371–376

    CAS  Article  PubMed  Google Scholar 

  11. Hagiwara T (1954) Recent genetics on flower-colour of Japanese morning glory with reference to biochemical studies. Bull Res Coll Agric Vet Sci Nihon Univ 3:1–15

    Google Scholar 

  12. Hagiwara T (1956) Genes and chromosome maps in the Japanese morning glory. Bull Res Coll Agric Vet Sci Nihon Univ 5:34–56

    Google Scholar 

  13. Hoshino A, Morita Y, Choi JD, Saito N, Toki K, Tanaka Y, Iida S (2003) Spontaneous mutations of the flavonoid 3′-hydroxylase gene conferring reddish flowers in the three morning glory species. Plant Cell Physiol 44:990–1001

    CAS  Article  PubMed  Google Scholar 

  14. Hoshino A, Park KI, Iida S (2009) Identification of r mutations conferring white flowers in the Japanese morning glory (Ipomoea nil). J Plant Res 122:215–222

    Article  PubMed  Google Scholar 

  15. Iida S, Hoshino A, Johzuka-Hisatomi Y, Habu Y, Inagaki Y (1999) Floricultural traits and transposable elements in the Japanese and common morning glories. Annal New York Acad Sci 870:265–274

    CAS  Article  Google Scholar 

  16. Iida S, Morita Y, Choi JD, Park KI, Hoshino A (2004) Genetics and epigenetics in flower pigmentation associated with transposable element in morning glories. Adv Biophys 38:141–159

    CAS  Article  Google Scholar 

  17. Imai Y (1931) Analysis of flower colour in Pharbitis nil. J Genet 24:203–224

    Article  Google Scholar 

  18. Imai Y (1935) Recurrent reversible mutations in the duskish allelomorphs of Pharbitis Nil. Z Indukt Abstamm Vererb 68:242–264

    Google Scholar 

  19. Inagaki Y, Hisatomi Y, Suzuki T, Kasahara K, Iida S (1994) Isolation of a Suppressor-mutator/Enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Plant Cell 6:375–383

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. Inagaki Y, Johzuka-Hisatomi Y, Mori T, Takahashi S, Hayakawa Y, Peyachoknagul S, Ozeki Y, Iida S (1999) Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories. Gene 226:181–188

    CAS  Article  PubMed  Google Scholar 

  21. Kondo T, Kawai T, Tamura H, Goto T (1987) Structure determination of heavenly blue anthocyanin, a complex monomeric anthocyanin from the morning glory Ipomoea tricolor, by means of the negative NOE method. Tetrahedron Lett 28:2273–2276

    CAS  Article  Google Scholar 

  22. Kubo H, Nawa N, Lupsea SA (2007) Anthocyaninless1 gene of Arabidopsis thaliana encodes a UDP-glucose:flavonoid-3-O-glucosyltransferase. J Plant Res 120:445–449

    CAS  Article  PubMed  Google Scholar 

  23. Larson RL, Coe EH Jr (1977) Gene-dependent flavonoid glucosyltransferase in maize. Biochem Genet 15:153–156

    CAS  Article  PubMed  Google Scholar 

  24. Lu TS, Saito N, Yokoi M, Shigihara A, Honda T (1992a) Acylated pelargonidin glycosides in the red-purple flowers of Pharbitis nil. Phytochemistry 31:289–295

    CAS  Article  PubMed  Google Scholar 

  25. Lu TS, Saito N, Yokoi M, Shigihara A, Honda T (1992b) Acylated peonidin glycosides in the violet-blue cultivars of Pharbitis nil. Phytochemistry 31:659–663

    CAS  Article  Google Scholar 

  26. Lu Y, Xie L, Chen J (2012) A novel procedure for absolute real-time quantification of gene expression patterns. Plant Methods 8:9

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  27. Matsuba Y, Sasaki N, Tera M, Okamura M, Abe Y, Okamoto E, Nakamura H, Funabashi H, Takatsu M, Saito M, Matsuoka H, Nagasawa K, Ozeki Y (2010) A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 22:3374–3389

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Morita Y, Hoshino A, Kikuchi Y, Okuhara H, Ono E, Tanaka Y, Fukui Y, Saito N, Nitasaka E, Noguchi H, Iida S (2005) Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3-O-glucoside-2″-O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J 42:353–363

    CAS  Article  PubMed  Google Scholar 

  29. Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S (2006) Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol 47:457–470

    CAS  Article  PubMed  Google Scholar 

  30. Morita Y, Takagi K, Fukuchi-Mizutani M, Ishiguro K, Tanaka Y, Nitasaka E, Nakayama M, Saito N, Kagami T, Hoshino A, Iida S (2014) A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. Plant J 78:294–304

    CAS  Article  PubMed  Google Scholar 

  31. Neuffer MG, Coe EH, Wessler S (1997) Mutants of maize. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  32. Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M (2005) Plant biochemistry: anthocyanin biosynthesis in roses. Nature 435:757–758

    CAS  Article  PubMed  Google Scholar 

  33. Ohnishi M, Fukada-Tanaka S, Hoshino A, Takada J, Inagaki Y, Iida S (2005) Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory. Plant Cell Physiol 46:259–267

    CAS  Article  PubMed  Google Scholar 

  34. Park KI, Ishikawa N, Morita Y, Choi JD, Hoshino A, Iida S (2007) A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J 49:641–654

    CAS  Article  PubMed  Google Scholar 

  35. Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    PubMed Central  Article  PubMed  Google Scholar 

  36. Saito N, Tatsuzawa F, Yoda K, Yokoi M, Kasahara K, Iida S, Shigihara A, Honda T (1995) Acylated cyanidin glycosides in the violet-blue flowers of Ipomoea purpurea. Phytochemistry 40:1283–1289

    CAS  Article  PubMed  Google Scholar 

  37. Saito N, Tatsuzawa F, Yokoi M, Kasahara K, Iida S, Shigihara A, Honda T (1996) Acylated pelargonidin glycosides in red-purple flowers of Ipomoea purpurea. Phytochemistry 43:1365–1370

    CAS  Article  PubMed  Google Scholar 

  38. Saito N, Tatsuzawa F, Kasahara K, Iida S, Honda T (1998) Acylated cyanidin 3-sophorosides in the brownish-red flowers of Ipomoea purpurea. Phytochemistry 49:875–880

    CAS  Article  Google Scholar 

  39. Saito N, Toki K, Morita Y, Hoshino A, Iida S, Shigihara A, Honda T (2005) Acylated peonidin glycosides from duskish mutant flowers of Ipomoea nil. Phytochemistry 66:1852–1860

    CAS  Article  PubMed  Google Scholar 

  40. Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol JN, Kooter JM (2001) Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol 11:436–440

    CAS  Article  PubMed  Google Scholar 

  41. Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    CAS  Article  PubMed  Google Scholar 

  42. Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    CAS  Article  PubMed  Google Scholar 

  43. Toki K, Saito N, Iida S, Hoshino A, Shigihara A, Honda T (2001a) Acylated pelargonidin 3-sophoroside-5-glucoside from the flowers of the Japanese morning glory cultivar ‘Violet’. Heterocycles 55:1241–1248

    CAS  Article  Google Scholar 

  44. Toki K, Saito N, Iida S, Hoshino A, Shigihara A, Honda T (2001b) A novel acylated pelargonidin 3-sophoroside-5-glucoside from greyish-purple flowers of the Japanese morning glory. Heterocycles 55:2261–2267

    CAS  Article  Google Scholar 

  45. Toki K, Saito N, Morita Y, Hoshino A, Iida S, Shigihara A, Honda T (2004) An acylated pelargonidin 3-sophoroside from the pale-brownish red flowers of Ipomoea nil. Heterocycles 63:1449–1454

    CAS  Article  Google Scholar 

  46. Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    CAS  Article  PubMed  Google Scholar 

  47. Yamazaki M, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Saito K (1999) Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. J Biol Chem 274:7405–7411

    CAS  Article  PubMed  Google Scholar 

  48. Zufall RA, Rausher MD (2003) The genetic basis of a flower color polymorphism in the common morning glory (Ipomoea purpurea). J Hered 94:442–448

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Norio Saito for his participation in valuable discussions, Miwako Matsumoto, Chisato Matsuda, Ryoko Nakamura, Tomoyo Takeuchi, and Kazuyo Ito for their technical assistance, and the NIBB Model Plant Research Facility and the NIBB Functional Genomics Facility for the technical support. We also thank the National Bioresource Project Morning Glory and Dr. Eiji Nitasaka for Ipomoea seeds. This work was supported by grants, Grant-in-Aid for Scientific Research (No. 17207002 to S. I. and No. 18770041 to A. H.) from the Ministry of Education, Culture, Sports, Science and Technology.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yasumasa Morita or Atsushi Hoshino.

Additional information

Special topic: Polyphenols: biosynthesis and function in plants and ecosystems. Guest editor: Stefan Martens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1300 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morita, Y., Ishiguro, K., Tanaka, Y. et al. Spontaneous mutations of the UDP-glucose:flavonoid 3-O-glucosyltransferase gene confers pale- and dull-colored flowers in the Japanese and common morning glories. Planta 242, 575–587 (2015). https://doi.org/10.1007/s00425-015-2321-5

Download citation

Keywords

  • Anthocyanin
  • Flavonoid
  • Flower pigmentation
  • Ipomoea