, Volume 242, Issue 1, pp 1–22 | Cite as

Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development

  • Jaime A. Teixeira da SilvaEmail author
  • Elena A. TsavkelovaEmail author
  • Songjun ZengEmail author
  • Tzi Bun NgEmail author
  • S. ParthibhanEmail author
  • Judit DobránszkiEmail author
  • Jean Carlos CardosoEmail author
  • M. V. RaoEmail author


The genus Dendrobium is one of the largest genera of the Orchidaceae Juss. family, although some of its members are the most threatened today. The reason why many species face a vulnerable or endangered status is primarily because of anthropogenic interference in natural habitats and commercial overexploitation. The development and application of modern techniques and strategies directed towards in vitro propagation of orchids not only increases their number but also provides a viable means to conserve plants in an artificial environment, both in vitro and ex vitro, thus providing material for reintroduction. Dendrobium seed germination and propagation are challenging processes in vivo and in vitro, especially when the extreme specialization of these plants is considered: (1) their biotic relationships with pollinators and mycorrhizae; (2) adaptation to epiphytic or lithophytic life-styles; (3) fine-scale requirements for an optimal combination of nutrients, light, temperature, and pH. This review also aims to summarize the available data on symbiotic in vitro Dendrobium seed germination. The influence of abiotic factors as well as composition and amounts of different exogenous nutrient substances is examined. With a view to better understanding how to optimize and control in vitro symbiotic associations, a part of the review describes the strong biotic relations of Dendrobium with different associative microorganisms that form microbial communities with adult plants, and also influence symbiotic seed germination. The beneficial role of plant growth-promoting bacteria is also discussed.


Dendrobium germination and propagation Mycorrhiza Orchid-associated bacteria Orchidaceae Symbiotic seed germination 



Abscisic acid


Arbuscular mycorrhizal fungi




Cornmeal agar


Dry weight


Fresh weight




Gibberellic acid


Indole-3-acetic acid


Internal transcribed spacer






Oatmeal agar


Orchid mycorrhizal fungi


Plant growth-promoting rhizobacteria


Plant growth regulator


Protocorm-like body


Scanning electron microscopy





The authors thank Dr. Meesawat Upatham (Prince of Songkla University, Thailand) for comments and opinions on an earlier version of the manuscript.

Conflict of interest

The authors declare no conflicts of interest.


  1. Adams DG (2000) Symbiotic interactions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 523–561Google Scholar
  2. Adams DG, Duggan PS (2008) Cyanobacteria-bryophyte symbioses. J Exp Bot 59:1047–1058PubMedGoogle Scholar
  3. Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184(3):529–544PubMedGoogle Scholar
  4. Batty AL, Dixon KW, Brundrett M, Sivasithamparam K (2001) Long-term storage of mycorrhizal fungi and seed as a tool for the conservation of endangered Western Australian terrestrial orchids. Aust J Bot 49:619–628Google Scholar
  5. Becker-Hapak M, Troxtel E, Hoerter J, Eisenstark A (1997) RpoS-dependent overexpression of carotenoids from Erwinia herbicola in OxyR-deficient Escherichia coli. Biochem Biophys Res Commun 239:305–309PubMedGoogle Scholar
  6. Bernard N (1900) Sur quelques germinations dificiles. Revue Générale Bot 12:108–120Google Scholar
  7. Beyrle HF, Smith SE, Peterson RL, Franco CMM (1995) Colonization of Orchis morio protocorms by mycorrhizal fungus: effects of nitrogen nutrition and glyphosate in modifying the responses. Can J Bot 73:1128–1140Google Scholar
  8. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc London B, Biol Sci 271:1799–1806Google Scholar
  9. Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61PubMedGoogle Scholar
  10. Bougoure J, Ludwig M, Brundrett M, Cliff J, Clode P, Kilburn M, Grierson P (2014) High-resolution secondary ion mass spectrometry analysis of carbon dynamics in mycorrhizas formed by an obligately myco-heterotrophic orchid. Plant, Cell Env 37:1223–1230Google Scholar
  11. Brundrett MC (1991) Mycorrhizas in natural ecosystems. In: Macfayden A, Begon M, Fitter AH (eds) Advances in ecological research, Academic Press, London 21:171–313Google Scholar
  12. Burgeff H (1959) Mycorrhiza of orchids. In: Withner C (ed) The orchids: a scientific survey. The Roland Press, New York, pp 361–395Google Scholar
  13. Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhizas in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416PubMedGoogle Scholar
  14. Chaotham C, Pongrakhananon V, Sritularak B, Chanvorachote P (2014) A bibenzyl from Dendrobium ellipsophyllum inhibits epithelial-to-mesenchymal transition and sensitizes lung cancer cells to anoikis. Anticancer Res 34(4):1931–1938PubMedGoogle Scholar
  15. Chen RR, Lin XG, Shi YQ (2003) Research advances of orchid mycorrhizae. Chin J Applied Env Biol 9:97–101 (in Chinese with English abstract)Google Scholar
  16. Chen XM, Guo SX, Meng ZX (2008) Effects of the fungal elicitors on the growth of Dendrobium candidum protocorms. Chin Trad Herb Drugs 39:423–426 (in Chinese with English abstract)Google Scholar
  17. Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX (2010) Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. Plant Growth Regul 29:328–337Google Scholar
  18. Chen J, Hu KX, Hou XQ, Guo SX (2011) Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World J Microbiol Biotechnol 27:1009–1016Google Scholar
  19. Chen J, Wang H, Guo SX (2012) Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). Mycorrhiza 22:297–307PubMedGoogle Scholar
  20. Chen CA, Chen CC, Shen CC, Chang HH, Chen YJ (2013a) Moscatilin induces apoptosis and mitotic catastrophe in human esophageal cancer cells. J Med Food 16(10):869–877PubMedCentralPubMedGoogle Scholar
  21. Chen J, Zhang LC, Xing YM, Wang YQ, Xing XK, Zhang DW, Liang HQ, Guo SX (2013b) Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). PLoS One 8:e58268PubMedCentralPubMedGoogle Scholar
  22. Chen J, Qi H, Li JB, Yi YQ, Chen D, Hu XH, Wang ML, Sun XL, Wei XY (2014) Experimental study on Dendrobium candidum polysaccharides on promotion of hair growth. Zhongguo Zhong Yao Za Zhi 39(2):291–295 (in Chinese)PubMedGoogle Scholar
  23. Clements MA (1988) Orchid mycorrhizal associations. Lindleyana 3:73–86Google Scholar
  24. Cockburn W, Goh CJ, Avadhani PN (1985) Photosynthetic carbon assimilation in a shootless orchid, Chiloschista usneoides (Don) LDL: a variant on crassulacean acid metabolism. Plant Physiol 77:83–86PubMedCentralPubMedGoogle Scholar
  25. Dan Y, Meng ZX, Guo SX (2012) Effects of forty strains of Orchidaceae mycorrhizal fungi on growth of protocorms and plantlets of Dendrobium candidum and D. nobile. Afr J Microbiol Res 6:34–39Google Scholar
  26. Dearnaley J (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486PubMedGoogle Scholar
  27. Dressler RL (1993) Phylogeny and classification of the orchid family. Deoscorides Press, OregonGoogle Scholar
  28. Dressler RL (2005) How many orchid species? Selbyana 26:155–158Google Scholar
  29. Dycus A, Knudson L (1957) The role of the velamen of the aerial roots of orchids. Bot Gazette 119:78–87Google Scholar
  30. Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945PubMedCentralPubMedGoogle Scholar
  31. Faria DC, Dias AC, Melo IS, de Carvalho Costa FE (2013) Endophytic bacteria isolated from orchid and their potential to promote plant growth. World J Microbiol Biotechnol 29(2):217–221PubMedGoogle Scholar
  32. Fay MF, Chase MW (2009) Orchid biology: from Linnaeus via Darwin to the 21st century. Ann Bot 104:359–364PubMedCentralPubMedGoogle Scholar
  33. Fonnesbech M (1972) Growth hormones and propagation of Cymbidium in vitro. Physiol Plant 27:310–316Google Scholar
  34. Forsyth LM, Smith LJ, Aitken EA (2006) Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycol Res 110:929–935PubMedGoogle Scholar
  35. Galdiano Júnior RF, Pedrinho EAN, Castellane TCL, Lemos EGM (2011) Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered Brazilian orchid, and their role in acclimatization. Rev Bras Ciência Solo 35:729–737Google Scholar
  36. Galdiano Júnior RF, Lemos EGM, Faria RT, Vendrame WA (2012) Cryopreservation of Dendrobium hybrid seeds and protocorms as affected by phloroglucinol and Supercool X1000. Sci Hortic 148:154–160Google Scholar
  37. Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insights into nitrogen and carbon gain from fungal association. New Phytol 160:209–223Google Scholar
  38. Gong CY, Yu ZY, Lu B, Yang L, Sheng YC, Fan YM, Ji LL, Wang ZT (2014) Ethanol extract of Dendrobium chrysotoxum Lindl ameliorates diabetic retinopathy and its mechanism. Vascul Pharmacol 62(3):134–142PubMedGoogle Scholar
  39. Guo SX, Xu JT (1990) Effects of fungi and its liquid extract on seed germination of Dendrobium hancockii Rolf. J Chin Mat Med 15(7397–7399):445 (in Chinese with English abstract)Google Scholar
  40. He XH, Duan YH, Chen YL, Xu MG (2010) A 60-year journey of mycorrhizal research in China: past, present and future directions. Sci China Life Sci 53:1374–1398PubMedGoogle Scholar
  41. Henskens FL, Green TG, Wilkins A (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Ann Bot 110:555–563PubMedCentralPubMedGoogle Scholar
  42. Homolka L (2013) Methods of cryopreservation in fungi. In: Gupta VK, Tuohy MG, Ayyachamy M, Turner KM, O’Donovan A (eds) Laboratory protocols in fungal biology current methods in fungal biology. Springer, NY, p 604Google Scholar
  43. Hossain MM, Kant R, Van PT, Winarto B, Zeng SJ, Teixeira da Silva JA (2013) The application of biotechnology to orchids. Critical Rev Plant Sci 32(2):69–139Google Scholar
  44. Hsu JL, Lee YJ, Leu WJ, Dong YS, Pan SL, Uang BJ, Guh JH (2014) Moniliformediquinone induces in vitro and in vivo antitumor activity through glutathione involved DNA damage response and mitochondrial stress in human hormone refractory prostate cancer. J Urol 191(5):1429–1438PubMedGoogle Scholar
  45. Hynson NA, Madsen TP, Selosse MA, Adam IKU, Ogura-Tsujita Y, Roy M, Gebauer G (2013) The physiological ecology of mycoheterotrophy in mycoheterotrophy. In: Merckx VSFT (ed) The biology of plants living on fungi. Springer Science + Business Media, New York, pp 297–343Google Scholar
  46. Jin H, Xu ZX, Chen JH, Han SF, Ge S, Luo YB (2009) Interaction between tissue-cultured seedlings of Dendrobium officinale and mycorrhizal fungus (Epulorhiza sp.) during symbiotic culture. Chin J Plant Ecol 33:433–441 (in Chinese with English abstract)Google Scholar
  47. Kamemoto H, Kuehnle AR, Amore TD (1999) Breeding Dendrobium orchids in Hawaii. University of Hawai‘i Press, Honolulu, p 166Google Scholar
  48. Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19:250–256PubMedGoogle Scholar
  49. Kang ZH, Han SF, Han ZM (2007) Effects of orchidaceous Rhizoctonias on the growth of Dendrobium candidum. J Nanjing For Univ (Nat Sci) 31:49–52Google Scholar
  50. Katiyar RS, Sharma GD, Mishra RR (1986) Mycorrhizal infections of epiphytic orchids in tropical forests of Meghalaya (India). J Ind Bot Soc 65:329–334Google Scholar
  51. Kavroulakis N, Ntougias S, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864PubMedGoogle Scholar
  52. Kew (Royal Botanic Gardens) (2011) World checklist of selected plant families. Accessed 26 April 2015
  53. Kharitonova IP (1999) Phytoncidal activity of prchids. Okhorona i kul’tivuvannya orkhidei (Preservation and Cultivation of Orchids). Kiev: Nauk. Dumka, pp. 131–133 (in Russian)Google Scholar
  54. Kim JH, Oh SY, Han SB, Uddin GM, Kim CY, Lee JK (2014) Anti-inflammatory effects of Dendrobium nobile derived phenanthrenes in LPS-stimulated murine macrophages. DOI, Arch Pharm Res. doi: 10.1007/s12272-014-0511-5 Google Scholar
  55. Knudson L (1921) La germinación simbiótica de las semillas de orquideas. Bol Real Soc Española Hist Nat 21:250–260Google Scholar
  56. Knudson L (1922) Nonsymbiotic germination of orchid seeds. Bot Gazette 73:1–25Google Scholar
  57. Knudson L (1925) Physiological study of the symbiotic germination of orchid seeds. Bot Gazette 79:345–379Google Scholar
  58. Knudson L (1946) A new nutrient solution for germination of orchid seed. Am Orch Soc Bull 15:214–217Google Scholar
  59. Kolomeitseva GL, Tsavkelova EA, Gusev EM, Malina NE (2002) On symbiosis of orchids and active isolate of the bacterium Bacillus pumilus in culture in vitro. Bull GBS Russian Acad Sci 183:117–126 (in Russian with English abstract)Google Scholar
  60. Kolomeitseva GL, Antipina VA, Shirokov AI, Khomutovskiy MI, Babosha AV, Riabchenko AS (2012) The orchid seeds: development, structure, germination. Geos, Moscow, p 352 (in Russian)Google Scholar
  61. Kowitdamrong A, Chanvorachote P, Sritularak B, Pongrakhananon V (2013) Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species. Biomed Res Int 2013:765–894Google Scholar
  62. Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan of plant root metabolites on the phytostimulating activity of rhizobacteria. Mikrobiologiia 73:156–158 (in English) and 195–198 (in Russian)Google Scholar
  63. Kuga Y, Sakamoto N, Yurimoto H (2014) Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms. New Phytol 202:594–605PubMedGoogle Scholar
  64. Kumar P, Rawat GS, Wood HP (2011) Diversity and ecology of Dendrobiums (Orchidaceae) in Chotanagpur plateau. India. Taiwania 56(1):23–36Google Scholar
  65. Li GJ, Sun P, Wang Q, Qian Y, Zhu K, Zhao X (2014) Dendrobium candidum Wall. ex Lindl. attenuates CCl4-induced hepatic damage in imprinting control region mice. Exp Ther Med 8(3):1015–1021PubMedCentralPubMedGoogle Scholar
  66. Liebel HT, Bidartondo MI, Preiss K, Segreto R, Stöckel M, Rodda M, Gebauer G (2010) C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. Am J Bot 97:903–912PubMedGoogle Scholar
  67. Lin X, Shaw PC, Sze SC, Tong Y, Zhang Y (2011) Dendrobium officinale polysaccharides ameliorate the abnormality of aquaporin 5, pro-inflammatory cytokines and inhibit apoptosis in the experimental Sjögren’s syndrome mice. Int Immunopharmacol 11(12):2025–2032PubMedGoogle Scholar
  68. Lin J, Chang YJ, Yang WB, Yu AL, Wong CH (2014) The multifaceted effects of polysaccharides isolated from Dendrobium huoshanense on immune functions with the induction of interleukin-1 receptor antagonist (IL-1ra) in monocytes. PLoS One 9(4):e94040PubMedCentralPubMedGoogle Scholar
  69. Lin X, Liu J, Chung W, Sze SC, Li H, Lao L, Zhang Y (2015) Polysaccharides of Dendrobium officinale induce aquaporin 5 translocation by activating M3 muscarinic receptors. Planta Med 81(2):130–137PubMedGoogle Scholar
  70. Lindblad P (2009) Cyanobacteria in symbiosis with cycads. In: Pawlowski K (ed) Prokaryotic symbionts in plants: microbiological monographs, vol 8. Springer, Dordrecht, pp 225–233Google Scholar
  71. Liu HX, Luo YB, Liu H (2010) Studies of mycorrhizal fungi of Chinese orchids and their role in orchid conservation in China—a review. Bot Rev 76:241–262Google Scholar
  72. Liu XF, Zhu J, Ge SY, Xia LJ, Yang HY, Qian YT, Ren FZ (2011) Orally administered Dendrobium officinale and its polysaccharides enhance immune functions in BALB/c mice. Nat Prod Commun 6(6):867–870PubMedGoogle Scholar
  73. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedGoogle Scholar
  74. Lv GY, Xia CQ, Chen SH, Su J, Liu XP, Li B, Gao JL (2013) Effect of Dendrobium officinale granule on long-term-alcohol-induced hypertension rats. Zhongguo Zhong Yao Za Zhi 38(20):3560–3565 (in Chinese)PubMedGoogle Scholar
  75. Maor R, Haskin S, Levi-Kedmi H, Sharon A (2004) In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 70:852–854Google Scholar
  76. Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse MA (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21(20):5098–5109PubMedGoogle Scholar
  77. Mehdipour Moghaddam MJ, Emtiazi G, Salehi Z (2012) Enchanced auxin production by Azospirillum pure cultures from plant root exudates. J Agr Sci Technol 14:985–994Google Scholar
  78. Merckx VS, Janssens SB, Hynson NA, Specht CD, Bruns TD, Smets EF (2012) Mycoheterotrophic interactions are not limited to a narrow phylogenetic range of arbuscular mycorrhizal fungi. Mol Ecol 21(6):1524–1532PubMedGoogle Scholar
  79. Miyazawa M, Shimamura H, Nakamura S, Sugiura W, Kosaka H, Kameoka H (1999) Moscatilin from Dendrobium nobile, a naturally occurring bibenzyl compound with potential antimutagenic activity. J Agric Food Chem 47:2163–2167PubMedGoogle Scholar
  80. Mohanty P, Das MC, Kumaria S, Tandon P (2012) High-efficiency cryopreservation of the medicinal orchid Dendrobium nobile Lindl. Plant Cell Tissue Organ Cult 109:297–305Google Scholar
  81. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  82. Ng TB, Liu JY, Wong JH, Ye XJ, Sze SCW, Tong Y, Zhang KY (2012) Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol 93:1795–1803PubMedGoogle Scholar
  83. Noel ARA (1974) Aspects of cell wall structure and development of velamen in Ansellia gigantean Reichb F. Ann Bot 38:495–504Google Scholar
  84. Nogueira RE, Pereira OL, Kasuya MCM, Lanna MCS, Mendonça MP (2005) Fungos micorrízicos associados a orquídeas em campos rupestres na região do Quadrilátero Ferrífero, MG, Brazil. Acta Bot Bras 19(3):417–424 (in Portuguese)Google Scholar
  85. Nontachaiyapoom S, Sasirat S, Manoch L (2010) Isolation and identification of Rhizoctonia-like fungi from roots of three orchid genera, Paphiopedilum, Dendrobium and Cymbidium, collected in Chiang Rai and Chiang Mai provinces of Thailand. Mycorrhiza 20:459–471PubMedGoogle Scholar
  86. Nontachaiyapoom S, Sasirat S, Manoch L (2011) Symbiotic seed germination of Grammatophyllum speciosum Blume and Dendrobium draconis Rchb. f., native orchids of Thailand. Sci Hortic 130:303–308Google Scholar
  87. Nurfadilah S, Swarts ND, Dixon KW, Lambers H, Merritt DJ (2013) Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Ann Bot 111:1233–1241PubMedCentralPubMedGoogle Scholar
  88. Olivain C, Alabouvette C (1997) Colonization of tomato by a non-pathogenic strain of Fusarium oxysporum. New Phytol 137:481–494Google Scholar
  89. Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89(11):1852–1858Google Scholar
  90. Otero JT, Mosquera TA, Flanagan NS (2013) Tropical orchid mycorrhizae: potential applications in orchid conservation, commercialization, and beyond. Lankesteriana 13(1–2):57–63Google Scholar
  91. Pan LH, Li XF, Wang MN, Zha XQ, Yang XF, Liu ZJ, Luo YB, Luo JP (2014) Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. Int J Biol Macromol 64:420–427PubMedGoogle Scholar
  92. Pant B (2013) Medicinal orchids and their uses: tissue culture a potential alternative for conservation. African J Plant Sci 7(10):448–467Google Scholar
  93. Parthibhan S, Senthil Kumar T, Rao MV (2015) Phenology and reintroduction strategies for Dendrobium aqueum Lindley—an endemic, near threatened orchid. J Nature Conserv 24:68–71Google Scholar
  94. Pereira MC, Pereira OL, Costa MD, Rocha RB, Kasuya MCM (2009) Diversidade de fungos micorrízicos Epulorhiza spp. isolados de Epidendrum secundum (Orchidaceae). Rev Bras Ciên Solo 33(5):1187–1197 (in Portuguese)Google Scholar
  95. Peterson RL, Currah RS (1990) Synthesis of mycorrhizae between protocorms of Goodyera repens (Orchidaceae) and Ceratobasidium cereale. Can J Bot 68:1117–1125Google Scholar
  96. Pridgeon AM (1986) Anatomical adaptations in Orchidaceae. Lindleyana 1:96–101Google Scholar
  97. Pritchard HW (1984) Liquid nitrogen preservation of terrestrial and epiphytic orchid seed. CryoLetters 5:295–300Google Scholar
  98. Qian XP, Zha XQ, Xiao JJ, Zhang HL, Pan LH, Luo JP (2014) Sulfated modification can enhance antiglycation abilities of polysaccharides from Dendrobium huoshanense. Carbohydr Polym 101:982–989PubMedGoogle Scholar
  99. Rai A, Bergman B (2002) Creation of new nitrogen-fixing cyanobacterial associations. Biol Env Proc Royal Irish Acad 102:65–68Google Scholar
  100. Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, CambridgeGoogle Scholar
  101. Rasmussen HN, Rasmussen FN (2014) Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae. Bot J Linn Soc 175:313–327Google Scholar
  102. Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. Amer J Bot 80:1374–1378Google Scholar
  103. Rasmussen HN, Whigham DF (2002) Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy. New Phytol 154:797–807Google Scholar
  104. Rikkinen J (2013) Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 6:3–32Google Scholar
  105. Roberts DL, Dixon KW (2008) Orchids. Curr Biol 18:R325–R329PubMedGoogle Scholar
  106. Roy A, Tripathy P, Adhikary SP (1998) UV protecting pigment of epilithic cyanobacteria occuring on the various regions of India. In: Subramanian G, Kaushik BD, Venkataraman GS (eds) Cyanobacterial Biotechnology, Proceedings of an International Symposium, Sep 18-21. ISBN 81-204-1269-9, Oxford & IBH publishing, New Delhi, pp 439–447Google Scholar
  107. Ryan MJ, Smith D (2007) Cryopreservation and freeze-drying of fungi employing centrifugal and shelf freeze-drying. Methods Mol Biol 368:127–140PubMedGoogle Scholar
  108. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011:1–21Google Scholar
  109. Sandmann G, Kuhn S, Boger P (1998) Evaluation of structurally different carotenoids in Escherichia coli transformants as protectants against UV-B radiation. Appl Environ Microbiol 64:1972–1974PubMedCentralPubMedGoogle Scholar
  110. Sanford WW, Adanlawo I (1973) Velamen and exodermis characters of West African epiphytic orchids in relation to taxonomic grouping and habitat tolerance. Bot J Linn Soc 66:307–321Google Scholar
  111. Sattayasai N, Sudmoon R, Nuchadomrong S, Chaveerach A, Kuehnle AR, Mudalige-Jayawickrama RG, Bunyatratchata W (2009) Dendrobium findleyanum agglutinin: production, localization, anti-fungal activity and gene characterization. Plant Cell Rep 28:1243–1252PubMedGoogle Scholar
  112. Selosse MA, Martos F, Perry BA, Padamsee M, Roy M, Pailler T (2010) Saprotrophic fungal symbionts in tropical achlorophyllous orchids: finding treasures among the ‘molecular scraps’? Plant Signal Behav 5:349–353PubMedCentralPubMedGoogle Scholar
  113. Selosse MA, Boullard B, Richardson D (2011) Noël Bernard (1874–1911): orchids to symbiosis in a dozen years, one century ago. Symbiosis 54:61–68Google Scholar
  114. Singh A, Duggal S (2009) Medicinal orchids: an overview. Ethnobotanical Leaflets 13:351–363Google Scholar
  115. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, New YorkGoogle Scholar
  116. Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New YorkGoogle Scholar
  117. Song JY, Guo SX (2001) Effects of fungus on the growth of Dendrobium candidum and D. nobile in vitro culture. Acta Acad Med Sin 23(6):547–551 (in Chinese with English abstract)Google Scholar
  118. Song JI, Kang YJ, Yong HY, Kim YC, Moon A (2012) Denbinobin, a phenanthrene from Dendrobium nobile, inhibits invasion and induces apoptosis in SNU-484 human gastric cancer cells. Oncol Rep 27(3):813–818PubMedGoogle Scholar
  119. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. Microbiol Rev 31:425–448Google Scholar
  120. Stewart SL, Zettler LW (2002) Symbiotic germination of three semiaquatic rein orchids (Habenaria repens, H. quinquiseta, H. macroceratitis) from Florida. Aquat Bot 72:25–35Google Scholar
  121. Stöckel M, Tesitelova T, Jersakova J, Bidartondo MI, Gebauer G (2014) Carbon and nitrogen gain during the growth of orchid seedlings in nature. New Phytol 202:606–615PubMedGoogle Scholar
  122. Stoessl A, Arditti J (1984) Orchid phytoalexins. In: Arditti J (ed) Orchid biology: reviews and perspectives. Cornell University Press, New York, pp 151–175Google Scholar
  123. Sukphan P, Sritularak B, Mekboonsonglarp W, Lipipun V, Likhitwitayawuid K (2014) Chemical constituents of Dendrobium venustum and their antimalarial and anti-herpetic properties. Nat Prod Commun 9(6):825–827PubMedGoogle Scholar
  124. Sun J, Zhang F, Yang M, Zhang J, Chen L, Zhan R, Li L, Chen Y (2014) Isolation of α-glucosidase inhibitors including a new flavonol glycoside from Dendrobium devonianum. Nat Prod Res 28(21):1900–1905PubMedGoogle Scholar
  125. Sundin GW, Jacobs JL (1999) Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogeae L.). Microb Ecol 38:27–38PubMedGoogle Scholar
  126. Swangmaneecharern P, Serivichyaswat P, Nontachaiyapoom S (2012) Promoting effect of orchid mycorrhizal fungi Epulorhiza isolates on seed germination of Dendrobium orchids. Sci Hortic 148:55–58Google Scholar
  127. Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556PubMedCentralPubMedGoogle Scholar
  128. Tan XM, Wang CL, Chen XM, Zhou YQ, Wang YQ, Luo AX, Liu ZH, Guo SX (2014) In vitro seed germination and seedling growth of an endangered epiphytic orchid, Dendrobium officinale, endemic to China using mycorrhizal fungi (Tulasnella sp.). Sci Hortic 165:62–68Google Scholar
  129. Teixeira da Silva JA, Kerbauy GB, Zeng SJ, Chen ZL, Duan J (2014a) In vitro flowering of orchids. Crit Rev Biotechnol 34:56–76PubMedGoogle Scholar
  130. Teixeira da Silva JA, Zeng SJ, Dobránszki J, Galdiano R Jr, Cardoso JC, Vendrame WA (2014b) In vitro conservation of Dendrobium germplasm. Plant Cell Rep 33(9):1413–1423PubMedGoogle Scholar
  131. Teixeira da Silva JA, Zeng SJ, Dobránszki J, Cardoso JC, Kerbauy GB (2014c) In vitro flowering of Dendrobium. Plant Cell Tiss Org Cult 119:447–456Google Scholar
  132. Teixeira da Silva JA, Dobránszki J, Cardoso JC, Zeng SJ (2015) Dendrobium micropropagation: a review. Plant Cell Rep 34:671–704Google Scholar
  133. Tian CC, Zha XQ, Pan LH, Luo JP (2013) Structural characterization and antioxidant activity of a low-molecular polysaccharide from Dendrobium huoshanense. Fitoterapia 91:247–255PubMedGoogle Scholar
  134. Touchell DH, Dixon KW (1993) Cryopreservation of seed of Western Australian native species. Biodiversity Conserv 2:594–602Google Scholar
  135. Tsai AC, Pan SL, Liao CH, Guh JH, Wang SW, Sun HL, Liu YN, Chen CC, Shen CC, Chang YL, Teng CM (2010) Moscatilin, a bibenzyl derivative from the India orchid Dendrobrium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. Cancer Lett 292(2):163–170PubMedGoogle Scholar
  136. Tsavkelova EA (2011) Bacteria associated with orchid roots. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 221–259Google Scholar
  137. Tsavkelova EA, Cherdyntseva TA, Lobakova ES, Kolomeitseva GL, Netrusov AI (2001) Microbiota of orchid rhizoplane. Microbiology 70:492–497 (in English) and 567–573 (in Russian)Google Scholar
  138. Tsavkelova EA, Alexandrova AV, Cherdyntseva TA, Kolomeitseva GL, Netrusov AI (2003a) Fungi associated with orchid roots in greenhouse conditions. Mycol Phytopathol 37:57–63 (in Russian with English abstract)Google Scholar
  139. Tsavkelova EA, Cherdyntseva TA, Netrusov AI (2003b) Phytohormones production by the fungi associated with orchids. Mycol Phytopathol 37:75–83 (in Russian with English abstract)Google Scholar
  140. Tsavkelova EA, Lobakova ES, Kolomeitseva GL, Cherdyntseva TA, Netrusov AI (2003c) Localization of associative cyanobacteria in the roots of epiphytic orchids. Microbiology 86:91–104 (in English) and 99–104 (in Russian)Google Scholar
  141. Tsavkelova EA, Lobakova ES, Kolomeitseva GL, Cherdyntseva TA, Netrusov AI (2003d) Associative cyanobacteria, isolated from the roots of epiphytic orchids. Microbiology 72:92–97 (in English) and 105–110 (in Russian)Google Scholar
  142. Tsavkelova EA, Cherdyntseva TA, Netrusov AI (2004) Bacteria associated with the roots of epiphytic orchids. Microbiology 73:710–715 (in English) and 825–831 (in Russian)Google Scholar
  143. Tsavkelova EA, Klimova YS, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:133–143 (in English) and 133–143 (in Russian)Google Scholar
  144. Tsavkelova EA, Cherdyntseva TA, Klimova SYu, Shestakov AI, Botina SG, Netrusov AI (2007) Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch Microbiol 188:655–664PubMedGoogle Scholar
  145. Tsavkelova EA, Bömke C, Netrusov AI, Weiner J, Tudzynski B (2008) Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fung Gen Biol 45:1393–1403Google Scholar
  146. Tsavkelova E, Oeser B, Oren-Young L, Israeli M, Sasson Y, Tudzynski B, Sharon A (2012) Identification and functional characterization of the genes for indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fung Gen Biol 49:48–57Google Scholar
  147. Tudzynski B, Sharon A (2002) Biosynthesis, biological role and application of fungal hormones. In: Osiewacz HD (ed) The Mycota X: industrial applications. Springer-Verlag, Berlin, pp 183–211Google Scholar
  148. Vakhrameeva MG, Tatarenko IV, Varlygina TI, Torosyan GK, Zagulskii MN (2008) Orchids of Russia and Adjacent Countries (within the Borders of the Former USSR). A.R.G Ganter Verlag, Ruggell 690 ppGoogle Scholar
  149. Vendrame WA, Carvalho VS, Dias JMM, Maguire I (2008) Pollination of Dendrobium hybrids using cryopreserved pollen. HortScience 43(1):264–267Google Scholar
  150. Venkateswarlu S, Raju MS, Subbaraju GV (2002) Synthesis and biological activity of isoamoenylin, a metabolite of Dendrobium amoenum. Biosci Biotechnol Biochem 66:2236–2238PubMedGoogle Scholar
  151. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10Google Scholar
  152. Vujanovic V, St-Arnaud M, Barabé D, Thibeault G (2000) Viability testing of orchid seed and the promotion of coloration and germination. Ann Bot 86:79–86Google Scholar
  153. Wang J, Ge J, Liu F, Bian H, Huang C (1998) Cryopreservation of seeds and protocorms of Dendrobium candidum. CryoLetters 19:123–128Google Scholar
  154. Wang H, Fang H, Wang Y, Duan L, Guo S (2011) In situ seed baiting techniques in Dendrobium officinale Kimuraet Migo and Dendrobium nobile Lindl.: the endangered Chinese endemic Dendrobium (Orchidaceae). World J Microbiol Biotechnol 27:2051–2059Google Scholar
  155. Wang Q, Sun P, Li G, Zhu K, Wang C, Zhao X (2014) Inhibitory effects of Dendrobium candidum Wall ex Lindl. on azoxymethane- and dextran sulfate sodium-induced colon carcinogenesis in C57BL/6 mice. Oncol Lett 7(2):493–498PubMedCentralPubMedGoogle Scholar
  156. Warcup J (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381Google Scholar
  157. Waterman RJ, Bidartondo MI (2008) Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J Exp Bot 59:1085–1096PubMedGoogle Scholar
  158. Wilkinson KG, Dixon KW, Sivasithamparam K (1989) Interaction of soil bacteria, mycorrhizal fungi and orchid seed in relation to germination of Australian orchids. New Phytol 112:429–435Google Scholar
  159. Wilkinson KG, Dixon KW, Sivasithamparam K, Ghisalberti EL (1994) Effect of IAA on symbiotic germination of an Australian orchid and its production by orchid-associated bacteria. Plant Soil 159:291–295Google Scholar
  160. Wu JP, Qian J, Zheng SZ (2002) A preliminary study on ingredient of secretion from fungi of orchid mycorrhizal. Chin J Applied Ecol 13(7):845–848Google Scholar
  161. Wu HF, Song XQ, Liu HX (2012) Ex-situ symbiotic seed germination of Dendrobium catenatum. Acta Ecol Sin 32(8):2491–2497 (in Chinese with English abstract)Google Scholar
  162. Xing YM, Chen J, Cui JL, Chen XM, Guo SX (2011) Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietman. Curr Microbiol 62:1218–1224PubMedGoogle Scholar
  163. Xiong L, Cao ZX, Peng C, Li XH, Xie XF, Zhang TM, Zhou QM, Yang L, Guo L (2013) Phenolic glucosides from Dendrobium aurantiacum var. denneanum and their bioactivities. Molecules 18(6):6153–6160PubMedGoogle Scholar
  164. Yang YL, Liu ZY, Zhu GS (2008) Study on symbiotic seed germination of Pleione bulbocodioides (Franch) Rolfe. Microbiology 35(6):909–912 (in Chinese with English abstract)Google Scholar
  165. Yang H, Lee PJ, Jeong EJ, Kim HP, Kim YC (2012) Selective apoptosis in hepatic stellate cells mediates the antifibrotic effect of phenanthrenes from Dendrobium nobile. Phytother Res 26:974–980PubMedGoogle Scholar
  166. Yang LC, Lu TJ, Hsieh CC, Lin WC (2014a) Characterization and immunomodulatory activity of polysaccharides derived from Dendrobium tosaense. Carbohydr Polym 111:856–863PubMedGoogle Scholar
  167. Yang S, Gong Q, Wu Q, Li F, Lu Y, Shi J (2014b) Alkaloids enriched extract from Dendrobium nobile Lindl. attenuates tau protein hyperphosphorylation and apoptosis induced by lipopolysaccharide in rat brain. Phytomedicine 21(5):712–716PubMedGoogle Scholar
  168. Yang S, Zhang X, Cao Z, Zhao K, Wang S, Chen M, Hu X (2014c) Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microb Biotechnol 7(6):611–620PubMedCentralPubMedGoogle Scholar
  169. Yu J, Zhou XF, Yang SJ, Liu WH, Hu XF (2013) Design and application of specific 16S DNA-targeted primers for assessing endophytic diversity in Dendrobium officinale using nested PCR DGGE. Appl Microbiol Biotechnol 97:9825–9836PubMedGoogle Scholar
  170. Yuan ZL, Chen YC, Yang Y (2009a) Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microbiol Biotechnol 25:295–303Google Scholar
  171. Yuan ZQ, Zhang JY, Liu T (2009b) Phylogenetic relationship of China Dendrobium species based on the sequence of the internal transcribed spacer of ribosomal DNA. Biol Plant 53:155–158Google Scholar
  172. Zainuddin M, Julkifle AL, Pobathy R, Sinniah UR, Khoddamzadeh A, Antony JJ, Pavallekoodi J, Subramaniam S (2011) Preliminary analysis of cryopreservation of Dendrobium Bobby Messina orchid using an encapsulation dehydration technique with Evans blue assay. Afr J Biotechnol 10:11870–11878Google Scholar
  173. Zeng SJ, Wu KL, Teixeira da Silva JA, Zhang JX, Chen ZL, Xia NH, Duan J (2012) Asymbiotic seed germination, seedling development and reintroduction of Paphiopedilum wardii Sumerh., an endangered terrestrial orchid. Sci Hortic 138:198–209Google Scholar
  174. Zeng SJ, Zhang Y, Teixeira da Silva JA, Wu KL, Zhang JX, Duan J (2014) Seed biology and in vitro seed germination of Cypripedium. Crit Rev Biotechnol 34:358–371PubMedGoogle Scholar
  175. Zhang L, Chen J, Lv Y, Gao C, Guo S (2012) Mycena sp., a mycorrhizal fungus of the orchid Dendrobium officinale. Mycol Progress 11(2):395–401Google Scholar
  176. Zhao MM, Zhang G, Zhang DW, Hsiao YY, Guo SX (2013) ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale. PLoS One 8(8):e72705PubMedCentralPubMedGoogle Scholar
  177. Zhu GS, Yu ZN, Gui Y, Liu ZY (2008) A novel technique for isolating orchid mycorrhizal fungi. Fungal Div 33:123–137Google Scholar
  178. Zi XM, Sheng CL, Goodale UM, Shao SC, Gao JY (2014) In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid Dendrobium aphyllum (Orchidaceae). Mycorrhiza 24:487–499PubMedGoogle Scholar
  179. Zotz G, Winkler U (2013) Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171:733–741PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Kagawa-KenJapan
  2. 2.Department of Microbiology, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  4. 4.School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
  5. 5.Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina
  6. 6.Department of Plant ScienceBharathidasan UniversityTiruchirappalliIndia
  7. 7.Research Institute of NyíregyházaUniversity of DebrecenNyíregyházaHungary
  8. 8.Department of Rural DevelopmentCentro de Ciências Agrárias, UFSCarArarasBrazil

Personalised recommendations