Skip to main content
Log in

Multiple evolution of flavonoid 3′,5′-hydroxylase

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Multiple F35H evolution from F3H has occurred in dicotyledonous plants. Efficient pollinator attraction is probably the driving force behind, as this allowed for the synthesis of delphinidin-based blue anthocyanins.

The cytochrome P450-dependent monooxygenases flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) hydroxylate the B-ring of flavonoids at the 3′- and 3′- and 5′-position, respectively. Their divergence took place early in plant evolution. While F3′H is ubiquitously present in higher plants, the distribution of F3′5′H is scattered. Here, we report that F3′5′H has repeatedly evolved from F3′H precursors at least four times in dicotyledonous plants: In the Asteraceae, we identified F3′5′Hs specific for the subfamilies Cichorioideae and Asteroideae, and additionally an F3′5′H that seems to be specific for the genus Echinops of the subfamily Carduoideae; moreover, characterisation of a sequence from Billardiera heterophylla (formerly Sollya heterophylla) (Pittosporaceae) showed that the independent evolution of an F3′5′H has occurred at least once also in another family. The evolution of F3′5′H from an F3′H precursor represents a gain of enzymatic function, probably triggered by an amino acid change at one position of substrate recognition site 6. The gain of F3′5′H activity allows for the synthesis of delphinidin-based anthocyanins which usually provide the basis for lilac to blue flower colours. Therefore, the need for an efficient pollinator attraction is probably the driving force behind the multiple F3′5′H evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BEBm:

Bayes empirical Bayes

Cy:

Cyanidin

CYP:

Cytochrome P450

Dp:

Delphinidin

GOF:

Gain of function

LOF:

Loss of function

LRT:

Likelihood ratio test

MSA:

Multiple sequence alignment

Pg:

Pelargonidin

SRS:

Substrate recognition site

References

  • Baudry J, Li W, Pan L, Berenbaum MR, Schuler MA (2003) Molecular docking of substrates and inhibitors in the catalytic site of CYP6B1, an insect cytochrome P450 monooxygenase. Protein Eng 16:577–587

    Article  CAS  PubMed  Google Scholar 

  • Blackburne BP, Whelan S (2012) Class of multiple sequence alignment algorithm affects genomic analysis. Mol Biol Evol 30:256

    Google Scholar 

  • Boase M, Lewis D, Davies K, Marshall G, Patel D, Schwinn K, Deroles S (2010) Isolation and antisense suppression of flavonoid 3′, 5′-hydroxylase modifies flower pigments and colour in cyclamen. BMC Plant Biol 10:107

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohm BA, Stuessy TF (2001) Flavonoids of the sunflower family (Asteraceae). Springer Verlag, Wien

    Book  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bremer K, Major (1994) Clades and grades of the Asteraceae. In: Hind DJN BH (ed) Compositae: systematics. Proceedings of the International Compositae Conference, Kew, pp 1–7

  • Brouillard R (1983) The in vivo expression of anthocyanin colour in plants. Phytochemistry 22:1311–1323

    Article  CAS  Google Scholar 

  • Brugliera F, Demelis L, Koes R, Tanaka Y (2003) Genetically modified plants with altered inflorescence. BRUGLIERA, Filippa. US Patent Nr. 8,288,612, 2012

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Berenbaum M, Schuler M (2002) Amino acids in SRS1 and SRS6 are critical for furanocoumarin metabolism by CYP6B1v1, a cytochrome P450 monooxygenase. Insect Mol Biol 11:175–186

    Article  CAS  PubMed  Google Scholar 

  • Cronk Q, Ojeda I (2008) Bird-pollinated flowers in an evolutionary and molecular context. J Exp Bot 59:715–727

    Article  CAS  PubMed  Google Scholar 

  • Des Marais DL, Rausher MD (2008) Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454:762–765

    CAS  PubMed  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids–a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    Article  PubMed  Google Scholar 

  • Fletcher W, Yang Z (2010) The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol Biol Evol 27:2257–2267

    Article  CAS  PubMed  Google Scholar 

  • Forkmann G, Heller W (1999) Biosynthesis of flavonoids. In: Barton D, Nakanishi K, Meth-Cohn O, Sankawa U (eds) Comprehensive natural products chemistry, vol 1. Elsevier Science, Amsterdam, pp 713–748

    Chapter  Google Scholar 

  • Goertzen LR, Cannone JJ, Gutell RR, Jansen RK (2003) ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. Mol Phylogenet Evol 29:216–234

    Article  CAS  PubMed  Google Scholar 

  • Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83–90

    CAS  PubMed  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Halbwirth H, Muster G, Stich K (2008) Unraveling the biochemical base of Dahlia flower coloration. Nat Prod Comm 3:1259–1266

    CAS  Google Scholar 

  • Harborne JB (1967) Comparative biochemistry of flavonoids. Academic Press, London

    Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry. Academic Press, London

    Google Scholar 

  • Harborne JB, Baxter H (1999) The handbook of natural flavonoids, Vol. 1 and Vol. 2. Wiley, New York

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  • Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J (1995) Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3:41–62

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro K, Taniguchi M, Tanaka Y (2012) Functional analysis of Antirrhinum kelloggii flavonoid 3′-hydroxylase and flavonoid 3′, 5′-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum. J Plant Res 125:451–456

    Article  CAS  PubMed  Google Scholar 

  • Jansen R, Kim KJ (1994) Implications of chloroplast DNA data for the classification and phylogeny of the Asteraceae. In: Hind DJN BH (ed) Compositae: systematics. Proceedings of the International Compositae Conference, Kew, pp 317–339

  • Jordan G, Goldman N (2011) The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Mol Biol Evol 29:272

    Google Scholar 

  • Kaltenbach M, Schröder G, Schmelzer E, Lutz V, Schröder J (1999) Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. Plant J 19:183–193

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Misawa K, Ki Kuma, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Löytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA 102:10557–10562

    Article  PubMed Central  PubMed  Google Scholar 

  • Markham K (1982) Techniques of flavonoid identification. Academic Press, London

    Google Scholar 

  • Martens S, Knott J, Seitz CA, Janvari L, Yu SN, Forkmann G (2003) Impact of biochemical pre-studies on specific metabolic engineering strategies of flavonoid biosynthesis in plant tissues. Biochem Eng J 14:227–235

    Article  CAS  Google Scholar 

  • Matern U, Reichenbach C, Heller W (1986) Efficient uptake of flavonoids into parsley (Petroselinum hortense) vacuoles requires acylated glycosides. Planta 167:183–189

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66:194–211

    Article  CAS  PubMed  Google Scholar 

  • Nørbæk R, Nielsen K, Kondo T (2002) Anthocyanins from flowers of Cichorium intybus. Phytochemistry 60:357–359

    Article  PubMed  Google Scholar 

  • Nordstrom C, Swain T (1953) The flavonoid glycosides of Dahlia variabilis. J Chem Soc 555:2764

    Article  Google Scholar 

  • Pompon D, Louerat B, Bronine A, Urban P (1996) Yeast expression of animal and plant P450 s in optimized redox environments. Methods Enzymol 272:51–64

    Article  CAS  PubMed  Google Scholar 

  • Rausher MD (2008) Evolutionary transitions in floral color. Int J Plant Sci 169:7–21

    Article  CAS  Google Scholar 

  • Redelings B (2014) Erasing errors due to alignment ambiguity when estimating positive selection. Mol Biol Evol 31:174

    Article  Google Scholar 

  • Rupasinghe S, Baudry J, Schuler MA (2003) Common active site architecture and binding strategy of four phenylpropanoid P450 s from Arabidopsis thaliana as revealed by molecular modeling. Protein Eng 16:721–731

    Article  CAS  PubMed  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  CAS  PubMed  Google Scholar 

  • Schlangen K, Miosic S, Topuz F, Muster G, Marosits T, Seitz C, Halbwirth H (2009) Chalcone 3-hydroxylation is not a general property of flavonoid 3′-hydroxylase. Plant Sci 177:97–102

    Article  CAS  Google Scholar 

  • Schlangen K, Miosic S, Halbwirth H (2010) Allelic variants from Dahlia variabilis encode flavonoid 3′-hydroxylases with functional differences in chalcone 3-hydroxylase activity. Arch Biochem Biophys 494:40–45

    Article  CAS  PubMed  Google Scholar 

  • Schwinn K, Miosic S, Davies K, Thill J, Gotame TP, Stich K, Halbwirth H (2014) The B-ring hydroxylation pattern of anthocyanins can be determined through activity of the flavonoid 3′-hydroxylase on leucoanthocyanidins. Planta 240:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Seitz C, Eder C, Deiml B, Kellner S, Martens S, Forkmann G (2006) Cloning, functional identification and sequence analysis of flavonoid 3′-hydroxylase and flavonoid 3′, 5′-hydroxylase cDNAs reveals independent evolution of flavonoid 3′, 5′-hydroxylase in the Asteraceae family. Plant Mol Biol 61:365–381

    Article  CAS  PubMed  Google Scholar 

  • Seitz C, Ameres S, Forkmann G (2007a) Identification of the molecular basis for the functional difference between flavonoid 3′-hydroxylase and flavonoid 3′, 5′-hydroxylase. FEBS Lett 581:3429–3434

    Article  CAS  PubMed  Google Scholar 

  • Seitz C, Vitten M, Steinbach P, Hartl S, Hirsche J, Rathje W, Treutter D, Forkmann G (2007b) Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochemistry 68:824–833

    Article  CAS  PubMed  Google Scholar 

  • Stich K, Eidenberger T, Wurst F, Forkmann G (1992) Enzymatic conversion of dihydroflavonols to flavan-3, 4-diols using flower extracts of Dianthus caryophyllus L. (carnation). Planta 187:103–108

    Article  CAS  PubMed  Google Scholar 

  • Streisfeld MA, Rausher MD (2009) Genetic changes contributing to the parallel evolution of red floral pigmentation among Ipomoea species. New Phytol 183:751–763

    Article  CAS  PubMed  Google Scholar 

  • Suchard MA, Redelings BD (2006) BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. Bioinformatics 22:2047–2048

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Osakabe A, Saito S, Furuyama D, Tomita A, Kojima Y, Yamadera M, Sakuta M (2005) Components of protocyanin, a blue pigment from the blue flowers of Centaurea cyanus. Phytochemistry 66:1607–1613

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Brugliera F, Chandler S (2009) Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10:5350–5369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Katsumoto Y, Chandler S (2010) Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives. Biosc Biotech Biochem 74:1760–1769

    Article  CAS  Google Scholar 

  • Wagner A (2002) Selection and gene duplication: a view from the genome. Genome Biol 3:1012

    Article  Google Scholar 

  • WenHsiung L (1997) Molecular evolution. Sinauer associates incorporated, Sunderland

    Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Kondo T (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26:884–915

    Article  CAS  PubMed  Google Scholar 

  • Zufall RA, Rausher MD (2004) Genetic changes associated with floral adaptation restrict future evolutionary potential. Nature 428(6985):847–850

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H. Halbwirth acknowledges funding by the Austrian Science Fund FWF (P24331-B16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Halbwirth.

Additional information

Special topic: Polyphenols: biosynthesis and function in plants and ecosystems. Guest editor: Stefan Martens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seitz, C., Ameres, S., Schlangen, K. et al. Multiple evolution of flavonoid 3′,5′-hydroxylase. Planta 242, 561–573 (2015). https://doi.org/10.1007/s00425-015-2293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2293-5

Keywords

Navigation