Advertisement

Planta

, Volume 241, Issue 6, pp 1435–1451 | Cite as

Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

  • Junwei Liu
  • Hanzi He
  • Marco Vitali
  • Ivan Visentin
  • Tatsiana Charnikhova
  • Imran Haider
  • Andrea Schubert
  • Carolien Ruyter-Spira
  • Harro J. Bouwmeester
  • Claudio Lovisolo
  • Francesca Cardinale
Original Article

Abstract

Main conclusion

Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.

Abstract

Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

Keywords

Carotenoid cleavage enzymes CCD7 CCD8 D27 MAX1 PDR1 NCED Drought GR24 (synthetic strigolactone analogue) Phosphate starvation Stomatal conductance 

Abbreviations

ABA

Abscisic acid

AAO

Abscisic-aldehyde oxidase

ABC

ATP-binding cassette

AMF

Arbuscular mycorrhizal fungi

CCD

Carotenoid cleavage dioxygenase

D

Dwarf

DAD

Decreased apical dominance

EST

Expressed sequence tag

Ljccd7

CCD7-knocked-down L. japonicus

MAX

More axillary growth

NCED

Nine-cis-epoxycarotenoid dioxygenase

PDR

Pleiotropic drug resistance

SL

Strigolactone

Notes

Acknowledgments

We would like to thank Jens Stougaard (Aarhus University, Denmark) for the generous supply of Gifu B-129 seeds, Binne Zwanenburg (Radboud University, Nijmegen, The Netherlands) who kindly supplied some of the GR24 used and Tadao Asami (Department of Applied Biological Chemistry, University of Tokyo, Tokyo, Japan) for providing synthetic 5-deoxystrigol and D6-5-deoxystrigol. The authors also wish to thank Paola Bonfante (University of Turin, Italy) for continuous support on the topic. The research was funded by the BioBITs Project (Piedmont Region, Converging Technologies call 2007) and the SLEPS Project (Compagnia di S. Paolo and University of Turin, call 2012) to FC, AS, CL and IV, and by the Netherlands Organization for Scientific Research (NWO; Vici grant, 865.06.002, and Equipment grant, 834.08.001) to HJB. JL was funded by the Chinese Scholarship Council (CSC, Grant No. 2008108168).

Conflict of interest

FC, IV and AS hold a share of StrigoLab S.r.l., which provided part of the GR24 used in the study.

Supplementary material

425_2015_2266_MOESM1_ESM.ppt (2.6 mb)
Supplementary material 1 (PPT 2617 kb)

References

  1. Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci USA 111:18084–18089CrossRefPubMedGoogle Scholar
  2. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827CrossRefPubMedGoogle Scholar
  3. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351CrossRefPubMedGoogle Scholar
  4. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424CrossRefPubMedGoogle Scholar
  5. Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, Garcia-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55CrossRefPubMedGoogle Scholar
  6. Beveridge CA, Kyozuka J (2009) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13:34–39CrossRefPubMedGoogle Scholar
  7. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238CrossRefPubMedGoogle Scholar
  8. Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull CGN, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:7CrossRefGoogle Scholar
  9. Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim TH, Schroeder JI, Huq E (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164:424–439CrossRefPubMedCentralPubMedGoogle Scholar
  10. Cardoso C, Zhang Y, Jamil M, Hepworth J, Charnikhova T, Dimkpa SO, Meharg C, Wright MH, Liu J, Meng X, Wang Y, Li J, McCouch SR, Leyser O, Price AH, Bouwmeester HJ, Ruyter-Spira C (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc Natl Acad Sci USA 111:2379–2384CrossRefPubMedCentralPubMedGoogle Scholar
  11. Challis RJ, Hepworth J, Mouchel C, Waites R, Leyser O (2013) A role for more axillary growth 1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. Plant Physiol 161:1885–1902CrossRefPubMedCentralPubMedGoogle Scholar
  12. Cheng X, Ruyter-Spira C, Bouwmeester H (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 4:199CrossRefPubMedCentralPubMedGoogle Scholar
  13. Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28CrossRefPubMedGoogle Scholar
  14. Dodd IC, Ferguson BJ, Beveridge CA (2008) Apical wilting and petiole xylem vessel diameter of the rms2 branching mutant of pea are shoot controlled and independent of a long-distance signal regulating branching. Plant Cell Physiol 49:791–800CrossRefPubMedGoogle Scholar
  15. Drummond RS, Sheehan H, Simons JL, Martinez-Sanchez NM, Turner RM, Putterill J, Snowden KC (2012) The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program. Front Plant Sci 2:115CrossRefPubMedCentralPubMedGoogle Scholar
  16. Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081CrossRefPubMedGoogle Scholar
  17. Foo E, Yoneyama K, Hugill C, Quittenden LJ, Reid JB (2013a) Strigolactones: internal and external signals in plant symbioses? Plant Signal Behav 8:e23168CrossRefPubMedCentralPubMedGoogle Scholar
  18. Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013b) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76–87CrossRefPubMedGoogle Scholar
  19. Gaiji N, Cardinale F, Prandi C, Bonfante P, Ranghino G (2012) The computational-based structure of Dwarf14 provides evidence for its role as potential strigolactone receptor in plants. BMC Res Notes 5:307CrossRefPubMedCentralPubMedGoogle Scholar
  20. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194CrossRefPubMedGoogle Scholar
  21. Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA 111:851–856CrossRefPubMedCentralPubMedGoogle Scholar
  22. Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036CrossRefPubMedGoogle Scholar
  23. Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular-genetics. Plant J 2:487–496CrossRefGoogle Scholar
  24. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California agricultural experiment station, Circular 347. College of Agriculture, University of California, BerkeleyGoogle Scholar
  25. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333CrossRefPubMedGoogle Scholar
  26. Jamil M, Charnikhova T, Cardoso C, Jamil T, Ueno K, Verstappen F, Asami T, Bouwmeester HJ (2011) Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res 51:373–385CrossRefGoogle Scholar
  27. Jeschke WD, Peuke AD, Pate JS, Hartung W (1997) Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J Exp Bot 48:1737–1747CrossRefGoogle Scholar
  28. Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18:147–160CrossRefPubMedGoogle Scholar
  29. Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987CrossRefPubMedCentralPubMedGoogle Scholar
  30. Kolbert Z, Bartha B, Erdei L (2008) Osmotic stress- and indole-3-butyric acid-induced NO generation are partially distinct processes in root growth and development in Pisum sativum. Physiol Plant 133:406–416CrossRefPubMedGoogle Scholar
  31. Koltai H (2013) Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Ann Bot 112:409–415CrossRefPubMedCentralPubMedGoogle Scholar
  32. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344CrossRefPubMedGoogle Scholar
  33. Lechat MM, Pouvreau JB, Peron T, Gauthier M, Montiel G, Veronesi C, Todoroki Y, Le Bizec B, Monteau F, Macherel D, Simier P, Thoiron S, Delavault P (2012) PrCYP707A1, an ABA catabolic gene, is a key component of Phelipanche ramosa seed germination in response to the strigolactone analogue GR24. J Exp Bot 63:5311–5322CrossRefPubMedCentralPubMedGoogle Scholar
  34. Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525CrossRefPubMedCentralPubMedGoogle Scholar
  35. Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang WC, Hooiveld GJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865CrossRefPubMedCentralPubMedGoogle Scholar
  36. Liu J, Lovisolo C, Schubert A, Cardinale F (2013a) Signaling role of strigolactones at the interface between plants, (micro)organisms, and a changing environment. J Plant Interact 8:17–33CrossRefGoogle Scholar
  37. Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester HJ, Cardinale F (2013b) Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J Exp Bot 64:1967–1981CrossRefPubMedCentralPubMedGoogle Scholar
  38. López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pagès V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874CrossRefPubMedGoogle Scholar
  39. López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TD, Thompson AJ, Ruyter-Spira C, Bouwmeester H (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354CrossRefPubMedGoogle Scholar
  40. Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T (2009) Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci Biotechnol Biochem 73:2460–2465CrossRefPubMedGoogle Scholar
  41. Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB, Beveridge CA, Yermiyahu U, Kaplan Y, Enzer Y, Wininger S, Resnick N, Cohen M, Kapulnik Y, Koltai H (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341CrossRefPubMedCentralPubMedGoogle Scholar
  42. Mott KA, Sibbernsen ED, Shope JC (2008) The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ 31:1299–1306CrossRefPubMedGoogle Scholar
  43. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185CrossRefPubMedGoogle Scholar
  44. Osorio J, Osorio ML, Chaves MM, Pereira JS (1998) Water deficits are more important in delaying growth than in changing patterns of carbon allocation in Eucalyptus globulus. Tree Physiol 18:363–373CrossRefPubMedGoogle Scholar
  45. Qin X, Zeevaart JA (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544–551CrossRefPubMedCentralPubMedGoogle Scholar
  46. Radin J (1984) Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol 76:392–394CrossRefPubMedCentralPubMedGoogle Scholar
  47. Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, López-Ráez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734CrossRefPubMedCentralPubMedGoogle Scholar
  48. Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83CrossRefPubMedGoogle Scholar
  49. Scaffidi A, Waters MT, Bond CS, Dixon KW, Smith SM, Ghisalberti EL, Flematti GR (2012) Exploring the molecular mechanism of karrikins and strigolactones. Bioorg Med Chem Lett 22:3743–3746CrossRefPubMedGoogle Scholar
  50. Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT (1965) Sap pressure in vascular plants. Negative hydrostatic pressure can be measured in plants. Science 148:339–346CrossRefPubMedGoogle Scholar
  51. Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci USA 111:1640–1645CrossRefPubMedCentralPubMedGoogle Scholar
  52. Shen H, Zhu L, Bu QY, Huq E (2012) MAX2 affects multiple hormones to promote photomorphogenesis. Mol Plant 5:750–762CrossRefPubMedGoogle Scholar
  53. Smith SM, Waters MT (2012) Strigolactones: destruction-dependent perception? Curr Biol 22:R924–R927CrossRefPubMedGoogle Scholar
  54. Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474CrossRefPubMedCentralPubMedGoogle Scholar
  55. Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, García-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385CrossRefGoogle Scholar
  56. Stirnberg P, Furner IJ, Leyser HMO (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94CrossRefPubMedGoogle Scholar
  57. Sugimoto Y, Ueyama T (2008) Production of (+)-5-deoxystrigol by Lotus japonicus root culture. Phytochemistry 69:212–217CrossRefPubMedGoogle Scholar
  58. Tan BC, Schwartz SH, Zeevaart JA, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94:12235–12240CrossRefPubMedCentralPubMedGoogle Scholar
  59. Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117CrossRefPubMedGoogle Scholar
  60. Torres-Vera R, Garcia JM, Pozo MJ, López-Ráez JA (2013) Do strigolactones contribute to plant defence? Mol Plant Pathol 15:211–216CrossRefPubMedGoogle Scholar
  61. Tramontini S, Vitali M, Centioni L, Schubert A, Lovisolo C (2013) Rootstock control of scion response to water stress in grapevine. Environ Exp Bot 93:20–26CrossRefGoogle Scholar
  62. Tsuchiya Y, McCourt P (2009) Strigolactones: a new hormone with a past. Curr Opin Plant Biol 12:556–561CrossRefPubMedGoogle Scholar
  63. Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126CrossRefPubMedCentralPubMedGoogle Scholar
  64. Vandemoortele JL, Kevers C, Billard JP, Gaspar T (2001) Osmotic pretreatment promotes axillary shooting from cauliflower curd pieces by acting through internal cytokinin level modifications. J Plant Physiol 158:221–225CrossRefGoogle Scholar
  65. Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012a) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295CrossRefPubMedGoogle Scholar
  66. Waters MT, Scaffidi A, Flematti GR, Smith SM (2012b) Karrikins force a rethink of strigolactone mode of action. Plant Signal Behav 7:969–972CrossRefPubMedCentralPubMedGoogle Scholar
  67. Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83CrossRefPubMedCentralPubMedGoogle Scholar
  68. Xie X, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117CrossRefPubMedGoogle Scholar
  69. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183PubMedCentralPubMedGoogle Scholar
  70. Yokota K, Fukai E, Madsen LH, Jurkiewicz A, Rueda P, Radutoiu S, Held M, Hossain MS, Szczyglowski K, Morieri G, Oldroyd GE, Downie JA, Nielsen MW, Rusek AM, Sato S, Tabata S, James EK, Oyaizu H, Sandal N, Stougaard J (2009) Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell 21:267–284CrossRefPubMedCentralPubMedGoogle Scholar
  71. Yoneyama K, Awad AA, Xie X, Takeuchi Y (2010) Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol 51:1095–1103CrossRefPubMedCentralPubMedGoogle Scholar
  72. Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207CrossRefPubMedCentralPubMedGoogle Scholar
  73. Zhang Y, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033CrossRefPubMedGoogle Scholar
  74. Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li S, Xu TH, Liu Y, Chen RZ, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Wang Y, Li J, Zhang C, Melcher K, Xu HE (2013) Crystal structures of two phytohormone signal-transducing alpha/beta hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23:436–439CrossRefPubMedCentralPubMedGoogle Scholar
  75. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Junwei Liu
    • 1
  • Hanzi He
    • 2
  • Marco Vitali
    • 1
  • Ivan Visentin
    • 1
  • Tatsiana Charnikhova
    • 2
  • Imran Haider
    • 2
    • 4
  • Andrea Schubert
    • 1
  • Carolien Ruyter-Spira
    • 2
    • 3
  • Harro J. Bouwmeester
    • 2
  • Claudio Lovisolo
    • 1
  • Francesca Cardinale
    • 1
  1. 1.Department of Agricultural, Forest and Food Sciences (DISAFA)University of TurinGrugliascoItaly
  2. 2.Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
  3. 3.Business Unit BiosciencePlant Research InternationalWageningenThe Netherlands
  4. 4.Center for Desert Agriculture, BESE DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia

Personalised recommendations