Skip to main content
Log in

WsMAGO2, a duplicated MAGO NASHI protein with fertility attributes interacts with MPF2-like MADS-box proteins

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

WsMAGO2 a duplicated protein in Withania through interactions with MPF2-like proteins affects male fertility by producing fewer flowers and aborted non-viable pollens/seeds regulated by anther-specific GAATTTGTGA motif.

The MAGO NASHIs are highly conserved genes that encode proteins known to be involved in RNA physiology and many other developmental processes including germ cell differentiation in animals. However, their structural and functional implications in plants as fertility function proteins remained fragmented. MAGO (shorter name of MAGO NASHI) proteins form heterodimers with MPF2-like MADS-box proteins which are recruited in calyx identity and male fertility in Solanaceous plants. Four MAGO genes namely WsMAGO1 and WsMAGO2 and TaMAGO1 and TaMAGO2 were isolated from Withania somnifera and Tubocapsicum anomalum, respectively. These genes have duplicated probably due to whole genome duplication event. Dysfunction of WsMAGO2 through double-stranded RNAi in Withania revealed suppression of RNA transcripts, non-viable pollens, fewer flowers and aborted non-viable seeds in the developing berry suggesting a role of this protein in many traits particularly male fertility. WsMAGO2 flaunted stronger yeast 2-hybrid interactions with MPF2-like proteins WSA206, WSB206 and TAB201 than other MAGO counterparts. The native transcripts of WsMAGO2 culminated in stamens and seed-bearing berries though other MAGO orthologs also exhibited expression albeit at lower level. Coding sequences of the two orthologs are highly conserved, but they differ substantially in their upstream promoter regions. Remarkably, WsMAGO2 promoter is enriched with many anther-specific cis-motifs common in fertility function genes promoters. Among them, disruption of GAATTTGTGA abolished YFP/GUS gene expression in anthers alluding towards its involvement in regulating expression of MAGO in anther. Our findings support a possible recruitment of WsMAGO2 in fertility trait in Withania. These genes have practical application in hybrid production through cytoplasmic male sterility maintenance for enhancement in crops yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TFs:

Transcription factors

CNE:

Conserved non-coding element

CRMs:

cis-Regulatory modules

TSS:

Translational start site

CDS:

Coding sequence

WGD:

Whole genome duplication

BAP:

Benzylaminopurine

Kn:

Kinetin

References

  • Andersen CB, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, Pedersen JS, Séraphin B, Le Hir H, Andersen GR (2006) Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313:1968–1972

    Article  CAS  PubMed  Google Scholar 

  • Ballut L, Marchadier B, Baguet A, Tomasetto C, Séraphin B, Le Hir H (2005) The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat Struc Mol Biol 12:861–869

    Article  CAS  Google Scholar 

  • Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  CAS  PubMed  Google Scholar 

  • Boothby TC, Wolniak SM (2011) Masked mRNA is stored with aggregated nuclear speckles and its asymmetric redistribution requires a homolog of mago nashi. BMC Cell Biol 12:45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boswell RE, Prout ME, Steichen JC (1991) Mutations in a newly identified Drosophila melanogaster gene, mago nashi, disrupt germ cell formation and result in the formation of mirror-image symmetrical double abdomen embryos. Development 113:373–384

    CAS  PubMed  Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72:85–95

    Article  CAS  PubMed  Google Scholar 

  • Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B (2005) Evolution in action: following function in duplicated floral homeotic genes. Curr Biol 15:1508–1512

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury A, Craig S, Bloemer K, Farrell L, Dennis E (1992) Genetic control of male fertility in higher plants. Funct Plant Biol 19:419–426

    Google Scholar 

  • Costa M, Nobre MS, Becker JD, Masiero S, Amorim MI, Pereira LG, Coimbra S (2013) Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes. BMC Plant Biol 13:7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duttweiler HM (1996) A highly sensitive and non-lethal ß-galactosidase plate assay for yeast. Trends Genet 12:340–341

    Article  CAS  PubMed  Google Scholar 

  • Fraser HB, Hirsh AE, Wall DP, Eisen MB (2004) Coevolution of gene expression among interacting proteins. Proc Natl Acad Sci USA 101:9033–9038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu Z, Yu J, Cheng X, Zong X, Xu J, Chen M, Li Z, Zhang D, Liang W (2014) The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell 26:1512–1524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goetz M, Godt DE, Guivarc’h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA 98:6522–6527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong P, He C (2014) Uncovering divergence of rice exon junction complex core heterodimer gene duplication reveals their essential role in growth, development, and reproduction. Plant Physiol 165:1047–1061

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Zhao M, He C (2014a) Slow co-evolution of the MAGO and Y14 protein families is required for the maintenance of their obligate heterodimerization mode. PLoS One 9:e84842

    Article  PubMed Central  PubMed  Google Scholar 

  • Gong P, Quan H, He C (2014b) Targeting MAGO roteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways. Plant J 80:905–914

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  CAS  PubMed  Google Scholar 

  • He C, Saedler H (2005) Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proc Natl Acad Sci USA 102:5779–5784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He C, Sommer H, Grosardt B, Huijser P, Saedler H (2007) PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-domain protein MPF2 from Physalis floridana. Mol Biol Evol 24:1229–1241

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D (2011) Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23:515–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Iguchi N, Yang S, Lamb DJ, Hecht NB (2006) An SNP in protamine 1: a possible genetic cause of male infertility? J Med Genet 43:382–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inaki M, Kato D, Utsugi T, Onoda F, Hanaoka F, Murakami Y (2011) Genetic analyses using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk regulation. Genes Cells 16:166–178

    Article  CAS  PubMed  Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    Article  CAS  PubMed  Google Scholar 

  • Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, Patton D, Levin JZ, Preuss D (2004) Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971–982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan MR, Rashid H, Ansar M, Chaudry Z (2003) High frequency shoot regeneration and Agrobacterium-mediated DNA transfer in Canola (Brassica napus L.). Plant Cell Tiss Org 75:223–231

    Article  Google Scholar 

  • Khan MR, Hu J-Y, Riss S, He C (2009) MPF2-like-A MADS-box genes control the inflated calyx syndrome in Withania (Solanaceae): roles of Darwinian selection. Mol Biol Evol 26:2463–2473

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Hu J, Ali GM (2012) Reciprocal loss of CArG-boxes and auxin response elements drives expression divergence of MPF2-Like MADS-box genes controlling calyx inflation. PLoS One 7:e42781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan MR, Khan IU, Ali GM (2013) MPF2-like MADS-box genes affecting expression of SOC1 and MAF1 are recruited to control flowering time. Mol Biotech 54:25–36

    Article  CAS  Google Scholar 

  • Li W, Boswell R, Wood WB (2000) mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Dev Biol 218:172–182

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li Y, Song S, Deng H, Li N, Fu X, Chen G, Yuan L (2014) An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta. doi:10.1007/s00425-014-2160-9

    PubMed Central  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Lee J-Y, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK (2006) RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol 62:397–408

    Article  CAS  PubMed  Google Scholar 

  • Micklem DR, Dasgupta R, Elliott H, Gergely F, Davidson C, Brand A, González-Reyes A, Johnston DS (1997) The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Curr Biol 7:468–478

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Newmark PA, Boswell RE (1994) The mago nashi locus encodes an essential product required for germ plasm assembly in Drosophila. Development 120:1303–1313

    CAS  PubMed  Google Scholar 

  • Newmark PA, Mohr SE, Gong L, Boswell RE (1997) mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation in Drosophila. Development 124:3197–3207

    CAS  PubMed  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Review Genet 34:401–437

    Article  CAS  Google Scholar 

  • Pagnussat GC, Yu H-J, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie L-F, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    Article  CAS  PubMed  Google Scholar 

  • Park N-I, Yeung EC, Muench DG (2009) Mago Nashi is involved in meristem organization, pollen formation, and seed development in Arabidopsis. Plant Sci 176:461–469

    Article  CAS  Google Scholar 

  • Parma DH, Bennett PE Jr, Boswell RE (2007) Mago Nashi and Tsunagi/Y14, respectively, regulate Drosophila germline stem cell differentiation and oocyte specification. Dev Biol 308:507–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh KB (1998) Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol 118:1111–1120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smaczniak C, Immink RG, Angenent GC, Kaufmann K (2012) Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:3081–3098

    Article  CAS  PubMed  Google Scholar 

  • Swidzinski JA, Zaplachinski ST, Chuong SD, Wong JF, Muench DG (2001) Molecular characterization and expression analysis of a highly conserved rice mago nashi 1 homolog. Genome 44:394–400

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Twell D, Yamaguchi J, Wing R, Ushiba J, McCormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507

    Article  CAS  PubMed  Google Scholar 

  • Van Der Weele CM, Tsai C-W, Wolniak SM (2007) Mago nashi is essential for spermatogenesis in Marsilea. Mol Biol Cell 18:3711–3722

    Article  PubMed Central  PubMed  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. In: Doyle JJ, Gaut BS (eds) Plant molecular evolution. Springer, Kluwer, pp 225–249

    Chapter  Google Scholar 

  • Zhang J, Stewart J, Mac D (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201

    CAS  Google Scholar 

  • Zhang S, Zhang J-S, Zhao J, He CY (2014) Distinct subfunctionalization and neofunctionalization of the B-class MADS-box genes in Physalis floridana. Planta. doi:10.1007/s00425-014-2190-3

    Google Scholar 

  • Zhao D-Z, Wang G-F, Speal B, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16:2021–2031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao J, Tian Y, Zhang J-S, Zhao M, Gong P, Riss S, Saedler R, He C (2013) The euAP1 protein MPF3 represses MPF2 to specify floral calyx identity and displays crucial roles in Chinese lantern development in Physalis. Plant Cell 25:2002–2021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Chaoying He (State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093 Beijing, China) for providing yeast constructs. Sincere appreciation and gratitude to Dr. Amir Ali Abbasi (NCB, QAU, Islamabad, Pakistan) for useful comments for the improvement of this manuscript. We are greatly indebted to Dr. Hans Sommer for providing Arabidopsis Oligo dT yeast library and Dr. Elmon Schmelzer (MPIPZ, Cologne, Germany) for confocal microscopy.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ramzan Khan.

Additional information

H. Ihsan and M. R. Khan contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihsan, H., Khan, M.R., Ajmal, W. et al. WsMAGO2, a duplicated MAGO NASHI protein with fertility attributes interacts with MPF2-like MADS-box proteins. Planta 241, 1173–1187 (2015). https://doi.org/10.1007/s00425-015-2247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2247-y

Keywords

Navigation