Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide

Abstract

Main conclusion

[EtPy][Br] is more reactive toward lignin than toward the PSs in wood cell walls, and [EtPy][Br] treatment results in inhomogenous changes to the cell wall’s ultrastructural and chemical components.

The effects of the ionic liquid 1-ethylpyridinium bromide ([EtPy][Br]), which prefers to react with lignin rather than cellulose on the wood cell walls of Japanese cedar (Cryptomeria japonica), were investigated from a morphology and topochemistry point of view. The [EtPy][Br] treatment induced cell wall swelling, the elimination of warts, and the formation of countless pores in the tracheids. However, many of the pit membranes and the cellulose crystalline structure remained unchanged. Raman microscopic analyses revealed that chemical changes in the cell walls were different for different layers and that the lignin in the compound middle lamella and the cell corner resists interaction with [EtPy][Br]. Additionally, the interaction of [EtPy][Br] with the wood cell wall is different to that of other types of ionic liquid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

CC:

Cell corner

CML:

Compound middle lamella

[C2mim][Cl]:

1-Ethyl-3-methylimidazolium chloride

[EtPy][Br]:

1-Ethylpyridinium bromide

PSs:

Polysaccharides

S2 :

Middle layer of secondary wall

S3 :

Inner layer of secondary wall

SEM:

Scanning electron microscopy

References

  1. Agarwal UP (1998) Assignment of the photo yellowing-related 1675 cm−1 Raman/IR band to p-quinones and its implications to the mechanism of color reversion in mechanical pulps. J Wood Chem Tech 18:381–402

    CAS  Article  Google Scholar 

  2. Agarwal UP (1999) An overview of Raman spectroscopy as applied to lignocellulosic materials. In: Argyropoulos DS (ed) Advances in lignocellulosics characterization. TAPPI Press, Atlanta, GA, pp 201–225

    Google Scholar 

  3. Agarwal UP, Atalla RH (2000) Using Raman spectroscopy to identify chromophores in lignin–lignocellulosics. In: Glasser WG, Northey RA, Schultz TP (eds) Lignin: historical, biological, and materials perspectives. ACS Symposium Series, vol 742. American Chemical Society, Washington, DC, pp 250–264

    Google Scholar 

  4. Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl Spectrosc 51:1648–1655

    CAS  Article  Google Scholar 

  5. Agarwal UP, Ralph SA (2008) Determination of ethylenic residues in wood and TMP of spruce by FT-Raman spectroscopy. Holzforschung 62:667–675

    CAS  Article  Google Scholar 

  6. Agarwal UP, McSweeny JD, Ralph SA (2011) FT-Raman investigation of milled wood lignins: softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Tech 31:324–344

    CAS  Article  Google Scholar 

  7. Akim LG, Colodette JL, Argyropoulos DS (2001) Factors limiting oxygen delignification of kraft pulp. Can J Chem 79:201–210

    CAS  Google Scholar 

  8. Chundawat SPS, Donohoe BS, Sousa LC, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4:973–984

    CAS  Article  Google Scholar 

  9. Corrales RCNR, Mendes FMT, Perrone CC, Anna C, Souza W, Abud Y, Bon EPS, Ferreira-Leitão V (2012) Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnol Biofuels 5:36

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. Donaldson LA (1987) S3 lignin concentration in radiate pine tracheids. Wood Sci Technol 21:227–234

    CAS  Article  Google Scholar 

  11. Donaldson LA (2001) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–873

    CAS  Article  PubMed  Google Scholar 

  12. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391–1398

    CAS  Article  Google Scholar 

  13. Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A 53:2383–2392

    Article  Google Scholar 

  14. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69

    CAS  Article  Google Scholar 

  15. Freemantle M (1998) Designer solvents—ionic liquids may boost clean technology development. Chem Eng News 76:32–37

    Article  Google Scholar 

  16. Harada H, Côté WA (1985) Structure of wood. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Orlando, pp 1–42

    Google Scholar 

  17. Honglu X, Tiejun S (2006) Wood liquefaction by ionic liquids. Holzforschung 60:509–512

    CAS  Article  Google Scholar 

  18. Jansen S, Smets E, Baas P (1998) Vestures in woody plants: a review. IAWA J 19:347–382

    Article  Google Scholar 

  19. Ji Z, Ling Z, Zhang X, Yang GH, Xu F (2014) Impact of alkali pretreatment on the chemical component distribution and ultrastructure of poplar cell walls. BioResources 9:4159–4172

    Article  Google Scholar 

  20. Kanbayashi T, Miyafuji H (2013) Morphological changes of Japanese beech treated with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 59:410–418

    CAS  Article  Google Scholar 

  21. Kanbayashi T, Miyafuji H (2014a) Comparative study of morphological changes in hardwoods treated with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 60:152–159

    CAS  Article  Google Scholar 

  22. Kanbayashi T, Miyafuji H (2014b) Raman microscopic analysis of wood after treatment with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. Holzforschung. doi:10.1515/hf-2014-0060

    Google Scholar 

  23. Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148

    Article  PubMed  Google Scholar 

  24. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66

    CAS  Article  Google Scholar 

  25. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    CAS  Article  PubMed  Google Scholar 

  26. Lucas M, Wagner GL, Nishiyama Y, Hanson L, Samayam IP, Schall CA, Langan P, Rector KD (2011) Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour Technol 102:4518–4523

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  27. Miyafuji H, Suzuki N (2012) Morphological changes in sugi (Cryptomeria japonica) wood after treatment with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 58:222–230

    CAS  Article  Google Scholar 

  28. Miyafuji H, Miyata K, Saka S, Ueda F, Mori M (2009) Reaction behavior of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 55:215–219

    CAS  Article  Google Scholar 

  29. Mok WSL, Antal MJ Jr (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161

    CAS  Article  Google Scholar 

  30. Nakamura A, Miyafuji H, Saka S (2010a) Liquefaction behavior of Western red cedar and Japanese beech in the ionic liquid 1-ethyl-3-methylimidazolium chloride. Holzforschung 64:289–294

    CAS  Google Scholar 

  31. Nakamura A, Miyafuji H, Saka S (2010b) Influence of reaction atmosphere on the liquefaction and depolymerization of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 56:256–261

    CAS  Article  Google Scholar 

  32. Piskorz J, Radlein D, Scott DS, Czernik S (1988) Liquid products from the fast pyrolysis of wood and cellulose. In: Bridgwater AV, Kuester JL (eds) Research in thermochemical biomass conversion. Elsevier Applied Science, London, pp 557–571

    Chapter  Google Scholar 

  33. Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302:792–793

    Article  PubMed  Google Scholar 

  34. Schenzel K, Fischer S (2001) NIR FT Raman spectroscopy—a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 8:49–57

    CAS  Article  Google Scholar 

  35. Scott JAN, Goring DAI (1970) Lignin concentration in the S3 layer of softwoods. Cellulose Chem Technol 4:83–93

    CAS  Google Scholar 

  36. Seddon KR (1997) Ionic liquids for clean technology. J Chem Tech Biotechnol 68:351–356

    CAS  Article  Google Scholar 

  37. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407

    Article  Google Scholar 

  38. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    CAS  Article  PubMed  Google Scholar 

  39. Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Liden G (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36:4659–4665

    CAS  Article  Google Scholar 

  40. Terashima N, Fukushima K (1988) Heterogeneity in formation of lignin—XI: an autoradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci Technol 22:259–270

    CAS  Article  Google Scholar 

  41. Viell J, Marquardt W (2011) Disintegration and dissolution kinetics of wood chips in ionic liquids. Holzforschung 65:519–525

    CAS  Article  Google Scholar 

  42. Whiting P, Goring DAI (1982) Chemical characterization of tissue fractions from the middle lamella and secondary wall of black spruce tracheids. Wood Sci Technol 16:261–267

    CAS  Article  Google Scholar 

  43. Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129

    CAS  Article  Google Scholar 

  44. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc, Chem Commun 13:965–967

    Article  Google Scholar 

  45. Yamazaki J, Minami E, Saka S (2006) Liquefaction of beech wood in various supercritical alcohols. J Wood Sci 52:527–532

    CAS  Article  Google Scholar 

  46. Yokoo T, Miyafuji H (2014) Reaction behavior of wood in an ionic liquid, 1-ethylpyridinium bromide. J Wood Sci 60:339–345

    CAS  Article  Google Scholar 

  47. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    CAS  Article  Google Scholar 

  48. Zhang X, Ma J, Ji Z, Yang GH, Zhou X, Xu F (2014) Using confocal Raman microscopy to real-time monitor poplar cell wall swelling and dissolution during ionic liquid pretreatment. Microsc Res Tech 77:609–618

    CAS  Article  PubMed  Google Scholar 

  49. Zhao Y, Wang Y, Zhu JY, Ragauskas A, Deng Y (2008) Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99:1320–1328

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Kyoto Municipal Institute of Industrial Technology and Culture for assistance with the Raman microscopic analyses. This research was partly supported by the Kyoto Prefectural University (KPU) Academic Promotion Fund and a Grant-in-Aid for Scientific Research (c) (25450246) from the JSPS for which the authors are grateful.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hisashi Miyafuji.

Additional information

Special topic: Polyphenols: biosynthesis and function in plants and ecosystems. Guest editor: Stefan Martens.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanbayashi, T., Miyafuji, H. Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide. Planta 242, 509–518 (2015). https://doi.org/10.1007/s00425-014-2235-7

Download citation

Keywords

  • 1-Ethylpyridinium bromide
  • Cell wall
  • Ionic liquid
  • Microscopy
  • Raman microscopy
  • Wood