, Volume 241, Issue 4, pp 987–1004 | Cite as

Identification, validation and cross-species transferability of novel Lavandula EST-SSRs

  • Ayelign M. Adal
  • Zerihun A. Demissie
  • Soheil S. MahmoudEmail author
Original Article


Main conclusion

We identified and characterized EST-SSRs with strong discrimination power against Lavandula angustifolia and Lavandula x intermedia . The markers also showed considerable cross-species transferability rate into six related Lavandula species.


Lavenders (Lavandula) are important economical crops grown around the globe for essential oil production. In an attempt to develop genetic markers for these plants, we analyzed over 13,000 unigenes developed from L. angustifolia and L. x intermedia EST databases, and identified 3,459 simple sequence repeats (SSR), which were dominated by trinucleotides (41.2 %) and dinucleotides (31.45 %). Approximately, 19 % of the unigenes contained at least one SSR marker, over 60 % of which were localized in the UTRs. Only 252 EST-SSRs were 18 bp or longer from which 31 loci were validated, and 24 amplified discrete fragments with 85 % polymorphism in L. x intermedia and L. angustifolia. The average number of alleles in L. x intermedia and L. angustifolia were 3.42 and 3.71 per marker with average PIC values of 0.47 and 0.52, respectively. These values suggest a moderate to strong level of informativeness for the markers, with some loci producing unique fingerprints. The cross-species transferability rate of the markers ranges 50–100 % across eight species. The utility of these markers was assessed in eight Lavandula species and 15 L. angustifolia and L. x intermedia cultivars, and the dendrogram deduced from their similarity indexes successfully delineated the species into their respective sections and the cultivars into their respective species. These markers have potential for application in fingerprinting, diversity studies and marker-assisted breeding of Lavandula.


EST-SSR Genetic marker Lavandula L. angustifolia L. x intermedia Polymorphism 



Protein coding regions


Expressed sequence tags


Essential oil


Genetic diversity


Number of alleles


Polymorphic information content


Primer flanking regions


Simple sequence repeats


Untranslated regions



This work was supported through grants and/or in-kind contributions to SSM by UBC, Genome British Columbia, Natural Sciences and Engineering Research Council of Canada, Agriculture and Agri-Food Canada and the BC Ministry of Agriculture (through programs delivered by the Investment Agriculture Foundation of BC), Downderry Nursery (Hadlow, Tonbridge, UK), Okanagan Lavender and Herb Farm (Kelowna, BC, Canada) and Sacred Mountain Lavender (Salt Spring Islands, BC, Canada). Finally, we appreciate Dr. Michael Russello for his help with manuscript preparation.


  1. Cavanagh HMA, Wilkinson JM (2002) Biological activities of lavender essential oil. Phytother Res 16:301–308. doi: 10.1002/ptr.1103 CrossRefPubMedGoogle Scholar
  2. Chabane K, Ablett GA, Cordeiro GM, Valkounn J, Henry RJ (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 52:903–909. doi: 10.1007/s10722-003-6112-7 CrossRefGoogle Scholar
  3. Conesa A, Götz S, García-Gómez JM, Javier T, Manuel T, Montserrat R (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi: 10.1093/bioinformatics/bti610 CrossRefPubMedGoogle Scholar
  4. Demissie ZA, Sarker LS, Mahmoud SS (2011) Cloning and functional characterization of β-phellandrene synthase from Lavandula angustifolia. Planta 233:685–696. doi: 10.1007/s00425-010-1332-5 CrossRefPubMedGoogle Scholar
  5. Demissie ZA, Cella MA, Sarker LS, Thompson TJ, Rheault MR, Mahmoud SS (2012) Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula. Plant Mol Biol 79:393–411. doi: 10.1007/s11103-012-9920-3 CrossRefPubMedGoogle Scholar
  6. Demissie ZA, Erland LAE, Rheault MR, Mahmoud SS (2013) The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase. J Biol Chem 288:6333–6341. doi: 10.1074/jbc.M112.431171 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Duran C, Appleby N, Edwards D, Batley J (2009) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinform 4:16–27CrossRefGoogle Scholar
  8. Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S, Singh MN, Fakrudin B, Pawan K, Wanjari KB, Varshney RK, Cook DR, Nagendra K, Singh NK (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol 11:17. doi: 10.1186/1471-2229-11-17 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422. doi: 10.1007/s00122-003-1450-6 CrossRefPubMedGoogle Scholar
  10. Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400. doi: 10.1007/s00122-003-1554-z CrossRefPubMedGoogle Scholar
  11. Gong L, Deng Z (2010) EST-SSR markers for gerbera (Gerbera hybrida). Mol Breed 26:125–132. doi: 10.1007/s11032-009-9380-x CrossRefGoogle Scholar
  12. Grover A, Aishwarya V, Sharma PC (2007) Biased distribution of microsatellite motifs in the rice genome. Mol Genet Genomics 277:469–480. doi: 10.1007/s00438-006-0204-y CrossRefPubMedGoogle Scholar
  13. Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. doi: 10.1111/j.1755-0998.2011.03014.x CrossRefPubMedGoogle Scholar
  14. Guo R, Mao Y-R, Cai J-R, Wang J-Y, Wu J, Qiu Y-X (2014) Characterization and cross-species transferability of EST–SSR markers developed from the transcriptome of Dysosma versipellis (Berberidaceae) and their application to population genetic studies. Mol Breed. doi: 10.1007/s11032-014-0134-z PubMedCentralPubMedGoogle Scholar
  15. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185CrossRefGoogle Scholar
  16. Hnia C, Mohamed B (2010) Genetic diversity of Lavandula multifida L. (Lamiaceae) in Tunisia: implication for conservation. Afr J Ecol 49:10–20. doi: 10.1111/j.1365-2028.2010.01223.x CrossRefGoogle Scholar
  17. Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genom 12:389. doi: 10.1186/1471-2164-12-389 CrossRefGoogle Scholar
  18. Jung S, Staton M, Lee T, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36:D1034–D1040. doi: 10.1093/nar/gkm803 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Karaca M, Ince AG, Aydin A, Ay ST (2013) Cross-genera transferable e-microsatellite markers for 12 genera of the Lamiaceae family. J Sci Food Agric 93:1869–1879. doi: 10.1002/jsfa.5982 CrossRefPubMedGoogle Scholar
  20. Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:1111–1115CrossRefPubMedCentralPubMedGoogle Scholar
  21. Lane A, Boecklemann A, Woronuk GN, Sarker S, Mahmoud SS (2010) A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta 231:835–845. doi: 10.1007/s00425-009-1090-4 CrossRefPubMedGoogle Scholar
  22. Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007. doi: 10.1093/molbev/msh073 CrossRefPubMedGoogle Scholar
  23. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. doi: 10.1093/bioinformatics/bti282 CrossRefPubMedGoogle Scholar
  24. Liu S-R, Li W-Y, Long D, Hu C-G, Zhang J-Z (2013) Development and characterization of genomic and expressed SSRs in citrus by genome-wide analysis. PLoS One 8:e75149. doi: 10.1371/journal.pone.0075149 CrossRefPubMedCentralPubMedGoogle Scholar
  25. Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE, Suzuki K, Howe G, Ohme-Takagi M (2013) A bHLH-type transcription factor, ABA-inducible bHLH-type transcription factor/JA-associated MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in arabidopsis. Plant Cell 25:1641–1656. doi: 10.1105/tpc.113.111112 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Novak J, Lukas B, Bolzer K, Grausgruber-Gröger S, Degenhardt J (2008) Identification and characterization of simple sequence repeat markers from a glandular Origanum vulgare expressed sequence tag. Mol Ecol Resour 8:599–601. doi: 10.1111/j.1471-8286.2007.02059.x CrossRefPubMedGoogle Scholar
  27. Oliveira ALM, Stoffels M, Schmid M, Reis VM, Baldani JI, Hartmann A (2009) Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106–113. doi: 10.1016/j.ejsobi.2008.09.004 CrossRefGoogle Scholar
  28. Palmieri DA, Novelli VM, Bastianel M, Cristofani-yaly M, Astúa-monge G, Carlos EF, Oliveira ACD, Machado MA (2007) Frequency and distribution of microsatellites from ESTs of citrus. Genet Mol Biol 30:1009–1018CrossRefGoogle Scholar
  29. Peng JH, Lapitan NLV (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80–96. doi: 10.1007/s10142-004-0128-8 CrossRefPubMedGoogle Scholar
  30. Pierantoni L, Cho K-H, Shin I-S, Chiodini R, Tartarini S, Dondini L, Kang S-J, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524. doi: 10.1007/s00122-004-1775-9 CrossRefPubMedGoogle Scholar
  31. Pinto LR, Oliveira KM, Ulian EC, Garcia AF, Souza APD (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47:795–804. doi: 10.1139/G04-055 CrossRefPubMedGoogle Scholar
  32. Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC (2006) Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed 125:378–384. doi: 10.1111/j.1439-0523.2006.01227.x CrossRefGoogle Scholar
  33. Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST-SSR: a new class of genetic markers in cotton. J. Cotton Sci. 8:112–123Google Scholar
  34. Radosavljević I, Jakse J, Javornik B, Satovic Z, Liber Z (2011) New microsatellite markers for Salvia officinalis (Lamiaceae) and cross-amplification in closely related species. Am J Bot 98:e316–e318. doi: 10.3732/ajb.1000462 CrossRefPubMedGoogle Scholar
  35. Radosavljević I, Satovic Z, Jakse J, Javornik B, Greguraš D, Jug-Dujaković M, Liber Z (2012) Development of new microsatellite markers for Salvia officinalis L. and its potential use in conservation-genetic studies of narrow endemic Salvia brachyodon Vandas. Int J Mol Sci 13:12082–12093. doi: 10.3390/ijms130912082 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Rolf JF (2000) NTSYS-PC. Numerical Taxonomy and Multivariate Analysis System, version 2.11T Exeter Software. Setauket, NY, USAGoogle Scholar
  37. Sarker LS, Galata M, Demissie ZA, Mahmoud SS (2012) Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia. Arch Biochem Biophys 528:163–170. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  38. Segarra-Moragues JG, Gleiser G (2008) Isolation and characterisation of di and tri nucleotide microsatellite loci in Rosmarinus officinalis (Lamiaceae), using enriched genomic libraries. Conserv Genet 10:571–575. doi: 10.1007/s10592-008-9572-7 CrossRefGoogle Scholar
  39. Senan S, Kizhakayil D, Sasikumar B, Sheeja TE (2014) Methods for development of microsatellite markers : an overview. Not Sci Biol 6:1–13CrossRefGoogle Scholar
  40. Sharma PC, Grover A, Kahl G (2007) Mining microsatellites in eukaryotic genomes. Trends Biotechnol 25:490–498. doi: 10.1016/j.tibtech.2007.07.013 CrossRefPubMedGoogle Scholar
  41. Sharma RK, Bhardwaj P, Negi R, Mohapatra T, Ahuja P (2009) Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biol 9:53. doi: 10.1186/1471-2229-9-53 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Singh H, Deshmukh RK, Singh A, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2009) Highly variable SSR markers suitable for rice genotyping using agarose gels. Mol Breed 25:359–364. doi: 10.1007/s11032-009-9328-1 CrossRefGoogle Scholar
  43. Singh RK, Jena SN, Khan S, Yadav S, Banarjee N, Raghuvanshi S, Bhardwaj V, Dattamajumder SK, Kapur R, Solomon S, Swapna M, Srivastava S, Tyagi AK (2013) Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene 524:309–329. doi: 10.1016/j.gene.2013.03.125 CrossRefPubMedGoogle Scholar
  44. Souza GM, Berges H, Bocs S, Casu R, D’Hont A, Ferreira JE, Henry R, Ming R, Potier B, Sluys M-A, Vincentz M, Paterson AH (2011) The sugarcane genome challenge: strategies for sequencing a highly complex genome. Trop Plant Biol 4:145–156. doi: 10.1007/s12042-011-9079-0 CrossRefGoogle Scholar
  45. Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452. doi: 10.1101/gr.184001.11 CrossRefPubMedCentralPubMedGoogle Scholar
  46. Thompson EP, Smith SGL, Glover BJ (2012) An Arabidopsis rhomboid protease has roles in the chloroplast and in flower development. J Exp Bot 63:3559–3570. doi: 10.1093/jxb/ers012 CrossRefPubMedCentralPubMedGoogle Scholar
  47. Upson T, Andrews S (2004) The genus Lavandula, 1st edn. Timber Press Inc, USAGoogle Scholar
  48. Urwin NAR (2014) Generation and characterisation of colchicine-induced polyploid Lavandula × intermedia. Euphytica 197:331–339. doi: 10.1007/s10681-014-1069-5 CrossRefGoogle Scholar
  49. Urwin NAR, Horsnell J, Moon T (2007) Generation and characterisation of colchicine-induced autotetraploid Lavandula angustifolia. Euphytica 156:257–266. doi: 10.1007/s10681-007-9373-y CrossRefGoogle Scholar
  50. Vaiman D, Mercier D, Moazami-Goudarzi K, Eggen A, Ciampolini R, Lépingle A, Velmala R, Kaukinen J, Varvio SL, Martin P (1994) A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm Genome 5:288–297CrossRefPubMedGoogle Scholar
  51. Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546PubMedGoogle Scholar
  52. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55. doi: 10.1016/j.tibtech.2004.11.005 CrossRefPubMedGoogle Scholar
  53. Varshney RK, Grosse I, Hähnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250. doi: 10.1007/s00122-006-0289-z CrossRefPubMedGoogle Scholar
  54. Weir BS (1996) Genetic data analysis. II. Methods for discrete population genetic data, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  55. Xin D, Sun J, Wang J, Jiang H, Hu G, Liu C, Chen Q (2012) Identification and characterization of SSRs from soybean (Glycine max) ESTs. Mol Biol Rep 39:9047–9057. doi: 10.1007/s11033-012-1776-8 CrossRefPubMedGoogle Scholar
  56. Yap I, Nelson RJ (1996) Winboot. a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. Manila, Philippines: IRRI Discussion paper series no. 14. International Rice Research InstituteGoogle Scholar
  57. You FM, Huo N, Gu YQ, Luo M-C, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform 9:253. doi: 10.1186/1471-2105-9-253 CrossRefGoogle Scholar
  58. Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434CrossRefPubMedGoogle Scholar
  59. Yu J, Dake TM, Singh S, Benscher D, Li WL, Gill B, Sorrells ME (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818. doi: 10.1139/G04-057 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ayelign M. Adal
    • 1
  • Zerihun A. Demissie
    • 1
    • 2
  • Soheil S. Mahmoud
    • 1
    Email author
  1. 1.Department of BiologyUniversity of British ColumbiaKelownaCanada
  2. 2.Department of Biological SciencesBrock UniversitySt. CatharinesCanada

Personalised recommendations