Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas

Abstract

Main conclusion

The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha.

Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5′ flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Battraw M, Hall T (1990) Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol 15:527–538

    Article  CAS  PubMed  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Burke TJ, Callis J, Vierstra RD (1988) Characterization of a polyubiquitin gene from Arabidopsis thaliana. Mol Gen Genet 213:435–443

    Article  CAS  PubMed  Google Scholar 

  4. Cai Y, Sun D, Wu G, Peng J (2010) ISSR-based genetic diversity of Jatropha curcas germplasm in China. Biomass Bioenerg 34:1739–1750

    Article  CAS  Google Scholar 

  5. Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem 265:12486–12493

    CAS  PubMed  Google Scholar 

  6. Chakrabarti PP, Prasad RBN (2012) Biodiesel production from Jatropha curcas oil. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, challenges for a new energy crop. Springer, New York, pp 463–490

    Chapter  Google Scholar 

  7. Chaparro-Pulido CA, Montiel MM, Palomo-Rios E, Mercado JA, Pliego-Alfaro F (2014) Development of an efficient transient transformation protocol for avocado (Persea americana Mill.) embryogenic callus. In Vitro Cell Dev-Pl 50:292–298

    Article  CAS  Google Scholar 

  8. Chen M-S, Wang G-J, Wang R-L, Wang J, Song S-Q, Xu Z-F (2011) Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci 181:696–700

    Article  CAS  PubMed  Google Scholar 

  9. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  CAS  PubMed  Google Scholar 

  10. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  11. Confalonieri M, Borghetti R, Macovei A, Testoni C, Carbonera D, Fevereiro MPS, Rommens C, Swords K, Piano E, Balestrazzi A (2010) Backbone-free transformation of barrel medic (Medicago truncatula) with a Medicago-derived transfer DNA. Plant Cell Rep 29:1013–1021

    Article  CAS  PubMed  Google Scholar 

  12. Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    Article  CAS  PubMed  Google Scholar 

  13. de Argollo Marques D, Siqueira WJ, Colombo CA, Ferrari RA (2013) Breeding and biotechnology of Jatropha curcas. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, challenges for a New Energy Crop, vol 2., Genetic improvement and biotechnologySpringer, New York, pp 457–478

    Google Scholar 

  14. Ding L-W, Sun Q-Y, Wang Z-Y, Sun Y-B, Xu Z-F (2008) Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate. Anal Biochem 374:426–428

    Article  CAS  PubMed  Google Scholar 

  15. Divakara BN, Upadhyaya HD, Wani SP, Gowda CLL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energ 87:732–742

    Article  CAS  Google Scholar 

  16. Donald RG, Cashmore AR (1990) Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J 9:1717

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4. 9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    Article  CAS  PubMed  Google Scholar 

  18. Eady C, Davis S, Catanach A, Kenel F, Hunger S (2005) Agrobacterium tumefaciens-mediated transformation of leek (Allium porrum) and garlic (Allium sativum). Plant Cell Rep 24:209–215

    Article  CAS  PubMed  Google Scholar 

  19. Ellerström M, Stfålberg K, Ezcurra I, Rask L (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol 32:1019–1027

    Article  PubMed  Google Scholar 

  20. Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  CAS  PubMed  Google Scholar 

  21. Ezcurra I, Ellerström M, Wycliffe P, Stålberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709

    Article  CAS  PubMed  Google Scholar 

  22. Fairless D (2007) The little shrub that could - maybe. Nature 449:652–655

    Article  PubMed  Google Scholar 

  23. Fang R-X, Nagy F, Sivasubramaniam S, Chua N-H (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1:141–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338:394–401

    Article  CAS  PubMed  Google Scholar 

  25. Garbarino JE, Belknap WR (1994) Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Biol 24:119–127

    Article  CAS  PubMed  Google Scholar 

  26. Garbarino JE, Oosumi T, Belknap WR (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    Article  CAS  PubMed  Google Scholar 

  28. Grec S, Vanham D, De Ribaucourt JC, Purnelle B, Boutry M (2003) Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes. Plant J 35:237–250

    Article  CAS  PubMed  Google Scholar 

  29. Hernandez-Garcia CM, Martinelli AP, Bouchard RA, Finer JJ (2009) A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Rep 28:837–849

    Article  CAS  PubMed  Google Scholar 

  30. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  31. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hobbs SLA, Kpodar P, Delong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene-expression in tobacco transformants. Plant Mol Biol 15:851–864

    Article  CAS  PubMed  Google Scholar 

  33. Hoffman NE, Ko K, Milkowski D, Pichersky E (1991) Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Mol Biol 17:1189–1201

    Article  CAS  PubMed  Google Scholar 

  34. Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol 29:637–646

    Article  CAS  PubMed  Google Scholar 

  35. Hull R, Covey S, Dale P (2000) Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Microb Ecol Health Dis 12:1–5

    Article  CAS  Google Scholar 

  36. Ishige F, Takaichi M, Foster R, Chua N-H, Oeda K (1999) A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J 18:443–448

    Article  CAS  Google Scholar 

  37. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in plants. EMBO J 6:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One 8:e71136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Joshi M, Mishra A, Jha B (2010) Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Ind Crops Prod 33:67–77

    Article  Google Scholar 

  40. Joung YH, Kamo K (2006) Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Rep 25:1081–1088

    Article  CAS  PubMed  Google Scholar 

  41. Kamo K, Blowers A, McElroy D (2000) Effect of the cauliflower mosaic virus 35S, actin, and ubiquitin promoters on uidA expression from a bar-uidA fusion gene in transgenic Gladiolus plants. In Vitro Cell Dev-Pl 36:13–20

    Article  CAS  Google Scholar 

  42. Kamo K, Kim A-Y, Park SH, Joung YH (2012) The 5′UTR-intron of the Gladiolus polyubiquitin promoter GUBQ1 enhances translation efficiency in Gladiolus and Arabidopsis. BMC Plant Biol 12:79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kawagoe Y, Murai N (1992) Four distinct nuclear proteins recognize in vitro the proximal promoter of the bean seed storage protein β-phaseolin gene conferring spatial and temporal control. Plant J 2:927–936

    CAS  PubMed  Google Scholar 

  44. Kim MJ, Yang SW, Mao H-Z, Veena SP, Yin J-L, Chua N-H (2014) Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels 7:36

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kumar N, Anand KGV, Pamidimarri D, Sarkar T, Reddy MP, Radhakrishnan T, Kaul T, Reddy MK, Sopori SK (2010) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crop Prod 32:41–47

    Article  CAS  Google Scholar 

  46. Kumar N, Reddy M, Sujatha M (2013) Genetic Transformation of Jatropha curcas: Current Status and Future Prospects. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, Challenges for a New Energy Crop, vol 2., Genetic Improvement and BiotechnologySpringer, New York, pp 535–546

    Chapter  Google Scholar 

  47. Lee M-H, Bostock RM (2006) Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Curr Genet 49:309–322

    Article  CAS  PubMed  Google Scholar 

  48. Li M, Li H, Jiang H, Pan X, Wu G (2008) Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tiss Org 92:173–181

    Article  CAS  Google Scholar 

  49. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  CAS  PubMed  Google Scholar 

  50. Liu DW, Oard SV, Oard JH (2003) High transgene expression levels in sugarcane (Saccharum officinarum L.) driven by the rice ubiquitin promoter RUBQ2. Plant Sci 165:743–750

    Article  CAS  Google Scholar 

  51. Maekawa T, Kusakabe M, Shimoda Y, Sato S, Tabata S, Murooka Y, Hayashi M (2008) Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in Lotus japonicus. Mol Plant Microbe In 21:375–382

    Article  CAS  Google Scholar 

  52. Mann DGJ, King ZR, Liu W, Joyce BL, Percifield RJ, Hawkins JS, LaFayette PR, Artelt BJ, Burris JN, Mazarei M (2011) Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnol 11:74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Manzara T, Carrasco P, Gruissem W (1991) Developmental and organ-specific changes in promoter DNA-protein interactions in the tomato rbcs gene family. Plant Cell 3:1305–1316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Masura SS, Parveez GKA, Ismail I (2010) Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene. New Biotechnol 27:289–299

    Article  CAS  Google Scholar 

  55. Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans) genes? Plant Physiol 107:679

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Mlynarova L, Loonen A, Heldens J, Jansen RC, Keizer P, Stiekema WJ, Nap JP (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6:417–426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Mlynarova L, Jansen RC, Conner AJ, Stiekema WJ, Nap JP (1995) The mar-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7:599–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  59. Pan B-Z, Xu Z-F (2011) Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30:166–174

    Article  CAS  Google Scholar 

  60. Pan J, Fu Q, Xu ZF (2010) Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. Afr J Biotechnol 9:6477–6481

    CAS  Google Scholar 

  61. Park Y-D, Papp I, Moscone EA, Iglesias VA, Vaucheret H, Matzke AJM, Matzke MA (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 9:183–194

    Article  CAS  PubMed  Google Scholar 

  62. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH (2004) Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60

    Article  CAS  PubMed  Google Scholar 

  64. Perales L, Penarrubia L, Cornejo MJ (2008) Induction of a polyubiquitin gene promoter by dehydration stresses in transformed rice cells. J Plant Physiol 165:159–171

    Article  CAS  PubMed  Google Scholar 

  65. Pérez-Barranco G, Torreblanca R, Padilla IMG, Sánchez-Romero C, Pliego-Alfaro F, Mercado JA (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell Tiss Org 97:243–251

    Article  Google Scholar 

  66. Plesse B, Criqui MC, Durr A, Parmentier Y, Fleck J, Genschik P (2001) Effects of the polyubiquitin gene Ubi. U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45:655–667

    Article  CAS  PubMed  Google Scholar 

  67. Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev-Pl 40:1–22

    Article  CAS  Google Scholar 

  68. Qin XB, Zheng XJ, Huang XQ, Lii YF, Shao CX, Xu Y, Chen F (2014) A novel transcription factor JcNAC1 response to stress in new model woody plant Jatropha curcas. Planta 239:511–520

    Article  CAS  PubMed  Google Scholar 

  69. Qu J, Mao HZ, Chen W, Gao SQ, Bai YN, Sun YW, Geng YF, Ye J (2012) Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels 5:10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Rooke L, Byrne D, Salgueiro S (2000) Marker gene expression driven by the maize ubiquitin promoter in transgenic wheat. Ann Appl Biol 136:167–172

    Article  CAS  Google Scholar 

  71. Rose A, Meier I, Wienand U (1999) The tomato I-box binding factor LeMYBI is a member of a novel class of Myb-like proteins. Plant J 20:641–652

    Article  CAS  PubMed  Google Scholar 

  72. Sambrook J, Russell DW, Russell DW (2001) Molecular cloning: a laboratory manual (3-volume set). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  73. Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Schledzewski K, Mendel RR (1994) Quantitative transient gene expression: comparison of the promoters for maize polyubiquitin1, rice actin1, maize-derived Emu and CaMV 35S in cells of barley, maize and tobacco. Transgenic Res 3:249–255

    Article  CAS  Google Scholar 

  75. Sibéril Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Eur J Biochem 268:5655–5666

    Article  PubMed  Google Scholar 

  76. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Sivamani E, Qu R (2006) Expression enhancement of a rice polyubiquitin gene promoter. Plant Mol Biol 60:225–239

    Article  CAS  PubMed  Google Scholar 

  78. Stålberg K, Ellerstöm M, Ezcurra I, Ablov S, Rask L (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–519

    Article  PubMed  Google Scholar 

  79. Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26:424–435

    Article  CAS  PubMed  Google Scholar 

  80. Takimoto I, Christensen AH, Quail PH, Uchimiya H, Toki S (1994) Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol Biol 26:1007–1012

  81. Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA, Devi P, Varshney RK (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513

    Article  CAS  Google Scholar 

  82. Twell D, Yamaguchi J, Wing RA, Ushiba J, Mccormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Gene Dev 5:496–507

    Article  CAS  PubMed  Google Scholar 

  83. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Wang J, Jiang J, Oard JH (2000) Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). Plant Sci 156:201–211

    Article  CAS  PubMed  Google Scholar 

  85. Wei HR, Wang ML, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    Article  CAS  PubMed  Google Scholar 

  86. Xiao K, Zhang C, Harrison M, Wang ZY (2005) Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Mol Breed 15:221–231

    Article  CAS  Google Scholar 

  87. Zhang L, He L-L, Fu Q-T, Xu Z-F (2013) Selection of reliable reference genes for gene expression studies in the biofuel plant Jatropha curcas using real-time quantitative PCR. Int J Mol Sci 14:24338–24354

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Top Science and Technology Talents Scheme of Yunnan Province (2009CI123), the Natural Science Foundation of Yunnan Province (2011FA034) and the CAS 135 program (XTBG-T02) awarded to Z.-F. Xu. The authors gratefully acknowledge the Central Laboratory of the Xishuangbanna Tropical Botanical Garden for providing research facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zeng-Fu Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tao, YB., He, LL., Niu, LJ. et al. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas . Planta 241, 823–836 (2015). https://doi.org/10.1007/s00425-014-2222-z

Download citation

Keywords

  • Physic nut
  • Constitutive promoter
  • Ubiquitin
  • Transgenic
  • Stress
  • CaMV35S