, Volume 241, Issue 4, pp 823–836 | Cite as

Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas

  • Yan-Bin Tao
  • Liang-Liang He
  • Long-Jian Niu
  • Zeng-Fu Xu
Original Article


Main conclusion

The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha.

Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5′ flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.


Physic nut Constitutive promoter Ubiquitin Transgenic Stress CaMV35S 



This work was supported by funding from the Top Science and Technology Talents Scheme of Yunnan Province (2009CI123), the Natural Science Foundation of Yunnan Province (2011FA034) and the CAS 135 program (XTBG-T02) awarded to Z.-F. Xu. The authors gratefully acknowledge the Central Laboratory of the Xishuangbanna Tropical Botanical Garden for providing research facilities.


  1. Battraw M, Hall T (1990) Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol 15:527–538CrossRefPubMedGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  3. Burke TJ, Callis J, Vierstra RD (1988) Characterization of a polyubiquitin gene from Arabidopsis thaliana. Mol Gen Genet 213:435–443CrossRefPubMedGoogle Scholar
  4. Cai Y, Sun D, Wu G, Peng J (2010) ISSR-based genetic diversity of Jatropha curcas germplasm in China. Biomass Bioenerg 34:1739–1750CrossRefGoogle Scholar
  5. Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem 265:12486–12493PubMedGoogle Scholar
  6. Chakrabarti PP, Prasad RBN (2012) Biodiesel production from Jatropha curcas oil. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, challenges for a new energy crop. Springer, New York, pp 463–490CrossRefGoogle Scholar
  7. Chaparro-Pulido CA, Montiel MM, Palomo-Rios E, Mercado JA, Pliego-Alfaro F (2014) Development of an efficient transient transformation protocol for avocado (Persea americana Mill.) embryogenic callus. In Vitro Cell Dev-Pl 50:292–298CrossRefGoogle Scholar
  8. Chen M-S, Wang G-J, Wang R-L, Wang J, Song S-Q, Xu Z-F (2011) Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci 181:696–700CrossRefPubMedGoogle Scholar
  9. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689CrossRefPubMedGoogle Scholar
  10. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  11. Confalonieri M, Borghetti R, Macovei A, Testoni C, Carbonera D, Fevereiro MPS, Rommens C, Swords K, Piano E, Balestrazzi A (2010) Backbone-free transformation of barrel medic (Medicago truncatula) with a Medicago-derived transfer DNA. Plant Cell Rep 29:1013–1021CrossRefPubMedGoogle Scholar
  12. Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581CrossRefPubMedGoogle Scholar
  13. de Argollo Marques D, Siqueira WJ, Colombo CA, Ferrari RA (2013) Breeding and biotechnology of Jatropha curcas. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, challenges for a New Energy Crop, vol 2., Genetic improvement and biotechnologySpringer, New York, pp 457–478Google Scholar
  14. Ding L-W, Sun Q-Y, Wang Z-Y, Sun Y-B, Xu Z-F (2008) Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate. Anal Biochem 374:426–428CrossRefPubMedGoogle Scholar
  15. Divakara BN, Upadhyaya HD, Wani SP, Gowda CLL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energ 87:732–742CrossRefGoogle Scholar
  16. Donald RG, Cashmore AR (1990) Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J 9:1717PubMedCentralPubMedGoogle Scholar
  17. Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4. 9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564CrossRefPubMedGoogle Scholar
  18. Eady C, Davis S, Catanach A, Kenel F, Hunger S (2005) Agrobacterium tumefaciens-mediated transformation of leek (Allium porrum) and garlic (Allium sativum). Plant Cell Rep 24:209–215CrossRefPubMedGoogle Scholar
  19. Ellerström M, Stfålberg K, Ezcurra I, Rask L (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol 32:1019–1027CrossRefPubMedGoogle Scholar
  20. Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396CrossRefPubMedGoogle Scholar
  21. Ezcurra I, Ellerström M, Wycliffe P, Stålberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709CrossRefPubMedGoogle Scholar
  22. Fairless D (2007) The little shrub that could - maybe. Nature 449:652–655CrossRefPubMedGoogle Scholar
  23. Fang R-X, Nagy F, Sivasubramaniam S, Chua N-H (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1:141–150CrossRefPubMedCentralPubMedGoogle Scholar
  24. Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338:394–401CrossRefPubMedGoogle Scholar
  25. Garbarino JE, Belknap WR (1994) Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Biol 24:119–127CrossRefPubMedGoogle Scholar
  26. Garbarino JE, Oosumi T, Belknap WR (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378CrossRefPubMedCentralPubMedGoogle Scholar
  27. Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138CrossRefPubMedGoogle Scholar
  28. Grec S, Vanham D, De Ribaucourt JC, Purnelle B, Boutry M (2003) Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes. Plant J 35:237–250CrossRefPubMedGoogle Scholar
  29. Hernandez-Garcia CM, Martinelli AP, Bouchard RA, Finer JJ (2009) A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Rep 28:837–849CrossRefPubMedGoogle Scholar
  30. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282CrossRefPubMedGoogle Scholar
  31. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300CrossRefPubMedCentralPubMedGoogle Scholar
  32. Hobbs SLA, Kpodar P, Delong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene-expression in tobacco transformants. Plant Mol Biol 15:851–864CrossRefPubMedGoogle Scholar
  33. Hoffman NE, Ko K, Milkowski D, Pichersky E (1991) Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Mol Biol 17:1189–1201CrossRefPubMedGoogle Scholar
  34. Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol 29:637–646CrossRefPubMedGoogle Scholar
  35. Hull R, Covey S, Dale P (2000) Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Microb Ecol Health Dis 12:1–5CrossRefGoogle Scholar
  36. Ishige F, Takaichi M, Foster R, Chua N-H, Oeda K (1999) A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J 18:443–448CrossRefGoogle Scholar
  37. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in plants. EMBO J 6:3901–3907PubMedCentralPubMedGoogle Scholar
  38. Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One 8:e71136CrossRefPubMedCentralPubMedGoogle Scholar
  39. Joshi M, Mishra A, Jha B (2010) Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Ind Crops Prod 33:67–77CrossRefGoogle Scholar
  40. Joung YH, Kamo K (2006) Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Rep 25:1081–1088CrossRefPubMedGoogle Scholar
  41. Kamo K, Blowers A, McElroy D (2000) Effect of the cauliflower mosaic virus 35S, actin, and ubiquitin promoters on uidA expression from a bar-uidA fusion gene in transgenic Gladiolus plants. In Vitro Cell Dev-Pl 36:13–20CrossRefGoogle Scholar
  42. Kamo K, Kim A-Y, Park SH, Joung YH (2012) The 5′UTR-intron of the Gladiolus polyubiquitin promoter GUBQ1 enhances translation efficiency in Gladiolus and Arabidopsis. BMC Plant Biol 12:79CrossRefPubMedCentralPubMedGoogle Scholar
  43. Kawagoe Y, Murai N (1992) Four distinct nuclear proteins recognize in vitro the proximal promoter of the bean seed storage protein β-phaseolin gene conferring spatial and temporal control. Plant J 2:927–936PubMedGoogle Scholar
  44. Kim MJ, Yang SW, Mao H-Z, Veena SP, Yin J-L, Chua N-H (2014) Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels 7:36CrossRefPubMedCentralPubMedGoogle Scholar
  45. Kumar N, Anand KGV, Pamidimarri D, Sarkar T, Reddy MP, Radhakrishnan T, Kaul T, Reddy MK, Sopori SK (2010) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crop Prod 32:41–47CrossRefGoogle Scholar
  46. Kumar N, Reddy M, Sujatha M (2013) Genetic Transformation of Jatropha curcas: Current Status and Future Prospects. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, Challenges for a New Energy Crop, vol 2., Genetic Improvement and BiotechnologySpringer, New York, pp 535–546CrossRefGoogle Scholar
  47. Lee M-H, Bostock RM (2006) Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Curr Genet 49:309–322CrossRefPubMedGoogle Scholar
  48. Li M, Li H, Jiang H, Pan X, Wu G (2008) Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tiss Org 92:173–181CrossRefGoogle Scholar
  49. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463CrossRefPubMedGoogle Scholar
  50. Liu DW, Oard SV, Oard JH (2003) High transgene expression levels in sugarcane (Saccharum officinarum L.) driven by the rice ubiquitin promoter RUBQ2. Plant Sci 165:743–750CrossRefGoogle Scholar
  51. Maekawa T, Kusakabe M, Shimoda Y, Sato S, Tabata S, Murooka Y, Hayashi M (2008) Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in Lotus japonicus. Mol Plant Microbe In 21:375–382CrossRefGoogle Scholar
  52. Mann DGJ, King ZR, Liu W, Joyce BL, Percifield RJ, Hawkins JS, LaFayette PR, Artelt BJ, Burris JN, Mazarei M (2011) Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnol 11:74CrossRefPubMedCentralPubMedGoogle Scholar
  53. Manzara T, Carrasco P, Gruissem W (1991) Developmental and organ-specific changes in promoter DNA-protein interactions in the tomato rbcs gene family. Plant Cell 3:1305–1316CrossRefPubMedCentralPubMedGoogle Scholar
  54. Masura SS, Parveez GKA, Ismail I (2010) Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene. New Biotechnol 27:289–299CrossRefGoogle Scholar
  55. Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans) genes? Plant Physiol 107:679PubMedCentralPubMedGoogle Scholar
  56. Mlynarova L, Loonen A, Heldens J, Jansen RC, Keizer P, Stiekema WJ, Nap JP (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6:417–426CrossRefPubMedCentralPubMedGoogle Scholar
  57. Mlynarova L, Jansen RC, Conner AJ, Stiekema WJ, Nap JP (1995) The mar-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7:599–609CrossRefPubMedCentralPubMedGoogle Scholar
  58. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812CrossRefPubMedGoogle Scholar
  59. Pan B-Z, Xu Z-F (2011) Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30:166–174CrossRefGoogle Scholar
  60. Pan J, Fu Q, Xu ZF (2010) Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. Afr J Biotechnol 9:6477–6481Google Scholar
  61. Park Y-D, Papp I, Moscone EA, Iglesias VA, Vaucheret H, Matzke AJM, Matzke MA (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 9:183–194CrossRefPubMedGoogle Scholar
  62. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH (2004) Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161CrossRefPubMedCentralPubMedGoogle Scholar
  63. Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60CrossRefPubMedGoogle Scholar
  64. Perales L, Penarrubia L, Cornejo MJ (2008) Induction of a polyubiquitin gene promoter by dehydration stresses in transformed rice cells. J Plant Physiol 165:159–171CrossRefPubMedGoogle Scholar
  65. Pérez-Barranco G, Torreblanca R, Padilla IMG, Sánchez-Romero C, Pliego-Alfaro F, Mercado JA (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell Tiss Org 97:243–251CrossRefGoogle Scholar
  66. Plesse B, Criqui MC, Durr A, Parmentier Y, Fleck J, Genschik P (2001) Effects of the polyubiquitin gene Ubi. U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45:655–667CrossRefPubMedGoogle Scholar
  67. Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev-Pl 40:1–22CrossRefGoogle Scholar
  68. Qin XB, Zheng XJ, Huang XQ, Lii YF, Shao CX, Xu Y, Chen F (2014) A novel transcription factor JcNAC1 response to stress in new model woody plant Jatropha curcas. Planta 239:511–520CrossRefPubMedGoogle Scholar
  69. Qu J, Mao HZ, Chen W, Gao SQ, Bai YN, Sun YW, Geng YF, Ye J (2012) Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels 5:10CrossRefPubMedCentralPubMedGoogle Scholar
  70. Rooke L, Byrne D, Salgueiro S (2000) Marker gene expression driven by the maize ubiquitin promoter in transgenic wheat. Ann Appl Biol 136:167–172CrossRefGoogle Scholar
  71. Rose A, Meier I, Wienand U (1999) The tomato I-box binding factor LeMYBI is a member of a novel class of Myb-like proteins. Plant J 20:641–652CrossRefPubMedGoogle Scholar
  72. Sambrook J, Russell DW, Russell DW (2001) Molecular cloning: a laboratory manual (3-volume set). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  73. Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76CrossRefPubMedCentralPubMedGoogle Scholar
  74. Schledzewski K, Mendel RR (1994) Quantitative transient gene expression: comparison of the promoters for maize polyubiquitin1, rice actin1, maize-derived Emu and CaMV 35S in cells of barley, maize and tobacco. Transgenic Res 3:249–255CrossRefGoogle Scholar
  75. Sibéril Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Eur J Biochem 268:5655–5666CrossRefPubMedGoogle Scholar
  76. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088CrossRefPubMedCentralPubMedGoogle Scholar
  77. Sivamani E, Qu R (2006) Expression enhancement of a rice polyubiquitin gene promoter. Plant Mol Biol 60:225–239CrossRefPubMedGoogle Scholar
  78. Stålberg K, Ellerstöm M, Ezcurra I, Ablov S, Rask L (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–519CrossRefPubMedGoogle Scholar
  79. Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26:424–435CrossRefPubMedGoogle Scholar
  80. Takimoto I, Christensen AH, Quail PH, Uchimiya H, Toki S (1994) Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol Biol 26:1007–1012Google Scholar
  81. Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA, Devi P, Varshney RK (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513CrossRefGoogle Scholar
  82. Twell D, Yamaguchi J, Wing RA, Ushiba J, Mccormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Gene Dev 5:496–507CrossRefPubMedGoogle Scholar
  83. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539CrossRefPubMedCentralPubMedGoogle Scholar
  84. Wang J, Jiang J, Oard JH (2000) Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). Plant Sci 156:201–211CrossRefPubMedGoogle Scholar
  85. Wei HR, Wang ML, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251CrossRefPubMedGoogle Scholar
  86. Xiao K, Zhang C, Harrison M, Wang ZY (2005) Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Mol Breed 15:221–231CrossRefGoogle Scholar
  87. Zhang L, He L-L, Fu Q-T, Xu Z-F (2013) Selection of reliable reference genes for gene expression studies in the biofuel plant Jatropha curcas using real-time quantitative PCR. Int J Mol Sci 14:24338–24354CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yan-Bin Tao
    • 1
    • 2
  • Liang-Liang He
    • 1
  • Long-Jian Niu
    • 1
    • 3
  • Zeng-Fu Xu
    • 1
  1. 1.Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations