Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu

Abstract

Main conclusion

Aqueous Si limits Cu uptake by a Si-accumulating plant via physicochemical mechanisms occurring at the root level. Sufficient Si supply may alleviate Cu toxicity in Cu-contaminated soils.

Little information is available on the role of silicon (Si) in copper (Cu) tolerance while Cu toxicity is widespread in crops grown on Cu-contaminated soils. A hydroponic study was set up to investigate the influence of Si on Cu tolerance in durum wheat (Triticum turgidum L.) grown in 0, 0.7, 7.0 and 30 µM Cu without and with 1.0 mM Si, and to identify the mechanisms involved in mitigation of Cu toxicity. Si supply alleviated Cu toxicity in durum wheat at 30 µM Cu, while Cu significantly increased Si concentration in roots. Root length, photosynthetic pigments concentrations, macroelements, and organic anions (malate, acetate and aconitate) in roots, were also increased. Desorption experiments, XPS analysis of the outer thin root surface (≤100 Å) and µXRF analyses showed that Si increased adsorption of Cu at the root surface as well as Cu accumulation in the epidermis while Cu was localised in the central cylinder when Si was not applied. Copper was not detected in phytoliths. This study provides evidences for Si-mediated alleviation of Cu toxicity in durum wheat. It also shows that Si supplementation to plants exposed to increasing levels of Cu in solution induces non-simultaneous changes in physiological parameters. We propose a three-step mechanism occurring mainly at the root level and limiting Cu uptake and translocation to shoots: (i) increased Cu adsorption onto the outer thin layer root surface and immobilisation in the vicinity of root epidermis, (ii) increased Cu complexation by both inorganic and organic anions such as aconitate and, (iii) limitation of translocation through an enhanced thickening of a Si-loaded endodermis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ait Ali N, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111

    Article  Google Scholar 

  2. Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems. Version 3.0 user’s manual. U.S. EPA, Athens, p 106

    Google Scholar 

  3. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Azooz MM, Abou-Elhamd MF, Al-Fredan MA (2012) Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Australian J Crop Sci 6:688–694

    CAS  Google Scholar 

  5. Balsberg Pahlsson AM (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Poll 47:287–319

    Article  Google Scholar 

  6. Bravin MN, Merrer BL, Denaix L, Schneider A, Hinsinger P (2010) Copper uptake kinetics in hydroponically-grown durum wheat (Triticum turgidum durum L.) as compared with soil’s ability to supply copper. Plant Soil 331:91–104

    Article  CAS  Google Scholar 

  7. Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Poll 102:151–161

    Article  CAS  Google Scholar 

  8. Brun LA, Maillet J, Hinsinger P, Pépin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Poll 111:293–302

    Article  CAS  Google Scholar 

  9. Buján E (2013) Elemental composition of phytoliths in modern plants (Ericaeae). Quat Int 287:114–120

    Article  Google Scholar 

  10. Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. Tansley review. New Phytol 182:799–816

    Article  CAS  PubMed  Google Scholar 

  11. Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    Article  CAS  PubMed  Google Scholar 

  12. Chaignon V, Di Malta D, Hinsinger P (2002) Fe-deficiency increases Cu acquisition by wheat cropped in a Cu-contaminated vineyard soil. New Phytol 154:121–130

    Article  CAS  Google Scholar 

  13. Cocker KM, Evans DE, Hodson MJ (1998) The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism. Physiol Plantar 104:608–614

    Article  CAS  Google Scholar 

  14. Collin B, Doelsch E, Keller C, Panfili F, Meunier JD (2012) Distribution and variability of silicon, copper and zinc in different bamboo species. Plant Soil 351:377–387

    Article  CAS  Google Scholar 

  15. Collin B, Doelsch E, Keller C, Panfili F, Meunier JD (2013) Effects of silicon and copper on bamboo grown hydroponically. Environ Sci Poll Res 20:6482–6495

    Article  CAS  Google Scholar 

  16. Collin B, Doelsch E, Keller C, Cazevieille P, Tella M, Chaurand P, Panfili F, Hazemann JL, Meunier JD (2014) Copper distribution and speciation in bamboo exposed to a high Cu concentration and Si supplementation. First evidence on the presence of reduced copper bound to sulfur compounds in Poaceae. Environ Poll 187:22–30

    Article  CAS  Google Scholar 

  17. Cook CM, Vardaka E, Lanaras T (1997) Concentrations of Cu, growth, and chlorophyll content of field-cultivated wheat growing in naturally enriched Cu soil. Bull Environ Contam Toxicol 58:248–253

    Article  CAS  PubMed  Google Scholar 

  18. da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Poll 197:323–330

    Article  Google Scholar 

  19. da Cunha KPV, do Nascimento CWA, Silva AJ (2008) Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on contaminated soil. J Plant Nutr Soil Sci 171:849–853

    Article  Google Scholar 

  20. Doncheva SN, Poschenrieder C, Stoyanova ZI, Georgieva K, Velichkova M, Barcelo J (2009) Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ Exp Botany 65:169–197

    Article  Google Scholar 

  21. Epstein E (1999) Silicon. Ann Rev Plant Physiol Plant Molec Biol 50:641–664

    Article  CAS  Google Scholar 

  22. Epstein E (2001) Silicon in plants: facts vs. concepts. In: Datnoff LE, Snyder GH, Korndörger GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 1–15

    Google Scholar 

  23. Epstein E, Bloom JA (2005) Mineral nutrition of plants: principles and perspective, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  24. Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticult 123:521–530

    Article  CAS  Google Scholar 

  25. Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Frantz JM, Khandekar S, Leisner S (2011) Silicon differentially influences copper toxicity response in silicon-accumulator and non-accumulator species. J Am Soc Horticul Sci 136:329–338

    CAS  Google Scholar 

  27. Gajewska E, Sklodowska M (2010) Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotox Environ Saf 73:996–1003

    Article  CAS  Google Scholar 

  28. Garnett TP, Graham RD (2005) Distribution and remobilization of iron and copper in wheat. Ann Bot 95:817–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Guntzer F, Keller C, Meunier JD (2010) Determination of the silicon concentration in plant material using tiron extraction. New Phytol 188:902–906

    Article  CAS  PubMed  Google Scholar 

  30. Guntzer F, Keller C, Meunier JD (2011) Benefits of plan silicon for crops: a review. Agron Sustain Develop 32:201–213

    Article  Google Scholar 

  31. Johnson AC, Singhal N (2013) Influence of chemation on Cu distribution and barriers to translocation in Lolium perenne. Environ Sci Technol 47:7688–7695

    Article  CAS  PubMed  Google Scholar 

  32. Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Article  Google Scholar 

  33. Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and phytoextraction efficiency: comparison of different species. Plant Soil 249:67–81

    Article  CAS  Google Scholar 

  34. Khandekar S, Leisner S (2011) Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. J Plant Physiol 168:699–705

    Article  CAS  PubMed  Google Scholar 

  35. Kinraide TB, Pedler JF, Parker DR (2004) Relative effective-ness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 259:201–208

    Article  CAS  Google Scholar 

  36. Köhl KI, Lösch R (1999) Chapter 17 in heavy metal stress in plants: from molecules to ecosystems. In: Prasad M, Hagemeyer J (eds) Experimental characterization of heavy metal tolerance in plants. Springer, Berlin, p 401

    Google Scholar 

  37. Kopittke PM, Menzies NW (2006) Effect of Cu toxicity on growth of cowpea (Vigna unguiculata). Plant Soil 279:287–296

    Article  CAS  Google Scholar 

  38. Kopittke PM, Asher CJ, Blamey FPC, Menzies NW (2009) Toxic effects of Cu2 + on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass. Sci Total Environ 407:4616–4621

    Article  CAS  PubMed  Google Scholar 

  39. Kopittke PM, Blamey FPC, Asher CJ, Menzies NW (2010) Trace metal phytotoxicity in solution culture: a review. J Exp Bot 61:945–954

    Article  CAS  PubMed  Google Scholar 

  40. Kumar R, Mehrotra NK, Nautiyal BD, Kumar P, Singh PK (2009) Effect of copper on growth, yield and concentration of Fe, Mn, Zn and Cu in wheat plants (Triticum aestivum L.). J Environ Biol 30:485–488

    CAS  PubMed  Google Scholar 

  41. Legros S, Chaurand P, Rose J, Masion A, Briois V, Ferrasse JH, Macary HS, Bottero JY, Doelsch E (2010) Investigation of copper speciation in pig slurry by a multitechnique approach. Environ Sci Technol 44:6926–6932

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Leisner M, Frantz J (2008) Alleviation of copper toxicity in Arabidopsis thaliana by silicon addition to hydroponic solutions. J Am Soc Horticul Science 133:670–677

    Google Scholar 

  43. Lichtenthaler HK (1987) Chlorophylls and carotenoids—pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 148. Academic Press, San Diego, pp 350–382

    Google Scholar 

  44. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  45. Mackie KA, Müller T, Kandeler E (2012) Remediation of copper in vineyards—a mini review. Environ Pollut 167:16–26

    Article  CAS  PubMed  Google Scholar 

  46. Manivasagaperumal R, Vijayarengan P, Balamurugan S, Thiyagarajan G (2011) Effect of copper on growth, dry matter yield and nutrient content of Vigna radiata (L.) Wilczek. J Phytol 3:53–62

    CAS  Google Scholar 

  47. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, San Diego

    Google Scholar 

  48. Michaud AM, Bravin MN, Galleguillos M, Hinsinger P (2007) Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant Soil 298:99–111

    Article  CAS  Google Scholar 

  49. Michaud AM, Chappellaz C, Hinsinger P (2008) Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil 310:151–165

    Article  CAS  Google Scholar 

  50. Mocquot B, Vangronsveld J, Clijsters H, Mench M (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant Soil 182:287–300

    CAS  Google Scholar 

  51. Neumann DE, Zur Nieden U (2001) Silicon and heavy metal tolerance of higher plant. Phytochemistry 56:685–692

    Article  CAS  PubMed  Google Scholar 

  52. Nowakowski W, Nowakowska J (1997) Silicon and copper interaction in the growth of spring wheat seedlings? Biologia Plantar 39:463–466

    Article  CAS  Google Scholar 

  53. Nwugo CC, Huerta AJ (2008) Effects of silicon nutrition on cadmium uptake: growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311:73–86

    Article  CAS  Google Scholar 

  54. Oliva SR, Mingorance MD, Leidi EO (2011) Effects of silicon on copper toxicity in Erica andevalensis Cabezudo and Rivera: a potential species to remediate contaminated soils. J Environ Monit 13:591–596

    Article  CAS  PubMed  Google Scholar 

  55. Ouzounidou G, Ciamporova M, Moustakas M, Karataglis S (1995) Responses of maize (Zea mays L.) plants to copper stress. I. Growth, mineral content and ultrastructure of roots. Environ Exp Bot 35:167–176

    Article  CAS  Google Scholar 

  56. Parr JF, Dolic V, Lancaster G, Boyd WE (2001a) A microwave digestion method for the extraction of phytoliths from herbarium specimens. Rev Palaeobot Palynol 116:203–212

    Article  Google Scholar 

  57. Parr JF, Lentfer CJ, Boyd WE (2001b) A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plant material. J Archaeol Sci 28:875–886

    Article  Google Scholar 

  58. Quartacci MF, Pinzino C, Sgherri CLM, Dalla Vecchia F, Navari-Izzo F (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol Plantar 108:87–93

    Article  CAS  Google Scholar 

  59. Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    Article  CAS  PubMed  Google Scholar 

  60. Rizwan M, Meunier JD, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mat 209–210:326–334

    Article  Google Scholar 

  61. Rogalla L, Romheld V (2002) Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ 25:549–555

    Article  CAS  Google Scholar 

  62. Roy S, Labelle S, Mehta P, Mihoc A, Fortin N, Masson C, Leblanc R, Chateauneuf G, Sura C, Gallipeau C et al (2005) Phytoremediation of heavy metal and PAH contaminated brownfield sites. Plant Soil 272:277–290

    Article  CAS  Google Scholar 

  63. Ryan BM, Kirby JK, Degryse F, Harris H, McLaughlin MJ, Scheiderich K (2013) Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytol 199:367–378

    Article  CAS  PubMed  Google Scholar 

  64. Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60

    Article  CAS  Google Scholar 

  65. Song A, Li P, Li Z, Fan F, Nikolic M, Liang Y (2011) The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344:319–333

    Article  CAS  Google Scholar 

  66. Tani FH, Barrington S (2005) Zinc and copper uptake by plants under two transpiration rates. Part I. Wheat (Triticum aestivum L.). Environ Pollut 138:538–547

    CAS  PubMed  Google Scholar 

  67. Treder W, Cieslinski G (2005) Effect of silicon application on cadmium uptake and distribution in strawberry plants grown on contaminated soils. J Plant Nut 28:917–929

    Article  CAS  Google Scholar 

  68. Vaculik M, Lux A, Luxova M, Tanimoto LI (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot 67:52–58

    Article  CAS  Google Scholar 

  69. Vaculik M, Landberg T, Greger M, Luxova M, Stolarikova M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize. Ann Bot 110:433–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Wang LJ, Wang YH, Chen Q, Cao WD, Li M, Zhang FS (2000) Silicon induced cadmium tolerance of rice seedlings. J Plant Nutr 23:1397–1406

    Article  CAS  Google Scholar 

  71. Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Wheeler DM, Power IL (1995) Comparison of plant uptake and plant toxicity of various ions in wheat. Plant Soil 172:167–173

    Article  CAS  Google Scholar 

  73. Wu JW, Shi Y, Zhu YX, Wang YC, Gong HJ (2013) Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23:815–825

    Article  CAS  Google Scholar 

  74. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. doi:10.5402/2011/402647 (Article ID 402647)

    Google Scholar 

  75. Xiong ZT, Wang H (2005) Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.). Environ Toxicol 20:188–194

    Article  CAS  PubMed  Google Scholar 

  76. Xu J, Yang L, Wang Z, Dong G, Huang J, Wang Y (2006) Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere 62:602–607

    Article  CAS  PubMed  Google Scholar 

  77. Yruela I (2005) Copper in plants. Brazilian J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

  78. Zorrig W, Rouached A, Shahzad Z, Abdelly C, Davidian JC, Berthomieu P (2010) Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce. J Plant Physiol 167:1239–1247

    Article  CAS  PubMed  Google Scholar 

  79. Zorrig W, Shahzad Z, Abdelly C, Berthomieu P (2012) Calcium enhances cadmium tolerance and decreases cadmium accumulation in lettuce (Lactuca sativa L.). Afr J Biotechnol 11:8441–8448

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the French INSU (Institut National des Sciences de l’Univers, CNRS) programme EC2CO (Ecosphère continentale et côtière). Muhammad RIZWAN was financed by HEC (Higher Education Commission) of Pakistan. We thank Stéphane Jézequel (Arvalis- Institut du Végétal, France) for his help in the selection of the durum wheat cultivar and for providing the seeds. Partial support from BIO-GEO-CLIM project (14.B25.31.0001) of the MinObrNauki is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Keller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 263 kb) Figure 8 ESM: Ca (a), Mg (b), K (c) and P (d) concentrations (g kg−1 DW) in shoots and acid-washed roots of wheat seedlings grown in hydroponics with 0, 0.7, 7 and 30 µM Cu and 0 or 1 mM Si. Bars represent SD of three replicates. Different letters indicate significant differences among the treatments at a P < 0.05 % for shoots and roots separately

Supplementary material 2 (DOCX 242 kb) Figure 9 ESM: Chloride (a), nitrate (b), sulfate (c) and phosphate (d) concentrations (mmol kg−1 DW) in shoots and acid-washed roots of wheat seedlings grown in hydroponics with 0, 0.7, 7 and 30 µM Cu and 0 or 1 mM Si. Bars represent SD of three replicates. Different letters indicate significant differences among the treatments at a P < 0.05 for shoots and roots separately

Supplementary material 3 (DOCX 18 kb) Table 2 ESM: Total elemental composition of phytoliths (pooled phytolith samples, mg kg−1 in DW) extracted from shoots of wheat seedlings grown in hydroponics with 0, 0.7, 7 and 30 µM Cu and 0 or 1 mM Si

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keller, C., Rizwan, M., Davidian, JC. et al. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta 241, 847–860 (2015). https://doi.org/10.1007/s00425-014-2220-1

Download citation

Keywords

  • Anions
  • Copper
  • Durum wheat
  • Hydroponics
  • Element localisation
  • µXRF
  • Roots
  • Silicon