Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau

Abstract

Main conclusion

We found the novel role of hydrogen sulfide in the adaptation of the alpine plant to altitude gradient in the Northern Tibetan Plateau.

Alpine plants have developed strategies to survive the extremely cold conditions prevailing at high altitudes; however, the mechanism underlying the evolution of these strategies remains unknown. Hydrogen sulfide (H2S) is an essential messenger that enhances plant tolerance to environmental stress; however, its role in alpine plant adaptation to environmental stress has not been reported until now. In this work, we conducted a comparative proteomics analysis to investigate the dynamic patterns of protein expression in Lamiophlomis rotata plants grown at three different altitudes. We identified and annotated 83 differentially expressed proteins. We found that the levels and enzyme activities of proteins involved in H2S biosynthesis markedly increased at higher altitudes, and that H2S accumulation increased. Exogenous H2S application increased antioxidant enzyme activity, which reduced ROS (reactive oxygen species) damage, and GSNOR (S-nitrosoglutathione reductase) activity, which reduced RNS (reactive nitrogen species) damage, and activated the downstream defense response, resulting in protein degradation and proline and sugar accumulation. However, such defense responses could be reversed by applying H2S biosynthesis inhibitors. Based on these findings, we conclude that L. rotata uses multiple strategies to adapt to the alpine stress environment and that H2S plays a central role during this process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

APX:

Ascorbate peroxidase

CAS:

Beta-Cyanoalanine synthase

CAT:

Catalase

CBS:

Cystathionine b-synthase

CO:

Carbon monoxide

CSC:

Cysteine synthesis complex

CSE:

Cystathionine c lyase

D-CD:

d-Cysteine desulfhydrase

FDR:

False discovery rates

GSH:

Glutathione

GSNOR:

S-nitrosoglutathione reductase

H2S:

Hydrogen sulfide

D/L-CDs:

d/l-cysteine desulfhydrases

NO:

Nitric oxide

OAS:

O-acetyl serine

OAS-TL:

O-acetyl-thiol-serinelyase

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

SOD:

Superoxide dismutase

References

  1. Alvarez C, Calo L, Romero LC, Garcia I, Gotor C (2010) An O-acetylserine(thiol)lyase homolog with l-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol 152:656–669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Alvarez C, Garcia I, Moreno I, Perez-Perez ME, Crespo JL, Romero LC, Gotor C (2012) Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis. Plant Cell 24:4621–4634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bai XG, Chen JH, Kong XX, Todd CD, Yang YP, Hu XY, Li DZ (2012) Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med 53:710–720

    Article  CAS  PubMed  Google Scholar 

  4. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  5. Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    Article  CAS  PubMed  Google Scholar 

  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  7. Briggs AG, Bent AF (2011) Poly(ADP-ribosyl)ation in plants. Trends Plant Sci 16:372–380

    Article  CAS  PubMed  Google Scholar 

  8. Chen Q, Lauzon LM, DeRocher AE, Vierling E (1990) Accumulation, stability, and localization of a major chloroplast heat-shock protein. J Cell Biol 110:1873–1883

    Article  CAS  PubMed  Google Scholar 

  9. Cheng W, Zhang L, Jiao C, Su M, Yang T, Zhou L, Peng R, Wang R, Wang C (2013) Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiol Biochem 70:278–286

    Article  CAS  PubMed  Google Scholar 

  10. Dixon DP, Skipsey M, Grundy NM, Edwards R (2005) Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol 138:2233–2244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Diz AP, Martinez-Fernandez M, Rolan-Alvarez E (2012) Proteomics in evolutionary ecology: linking the genotype with the phenotype. Mol Ecol 21:1060–1080

    Article  CAS  PubMed  Google Scholar 

  12. Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2090

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188:977–984

    Article  CAS  PubMed  Google Scholar 

  14. Gupta R, Deswal R (2012) Low temperature stress modulated secretome analysis and purification of antifreeze protein from Hippophae rhamnoides, a Himalayan wonder plant. J Proteome Res 11:2684–2696

    Article  CAS  PubMed  Google Scholar 

  15. Hancock JT, Whiteman M (2014) Hydrogen sulfide and cell signaling: team player or referee ? Plant Physiol Biochem 78:37–42

    Article  CAS  PubMed  Google Scholar 

  16. Hare PD, Cress WA, van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50:413–434

    CAS  Google Scholar 

  17. Herppich WB, Herppich M (1996) Ecophysiological investigations on plants of the genus Plectranthus (fam Lamiaceae) native to Yemen and southern Africa. Flora 191:401–408

    Google Scholar 

  18. Kachroo A, Robin GP (2013) Systemic signaling during plant defense. Curr Opin Plant Biol 16:527–533

    Article  CAS  PubMed  Google Scholar 

  19. Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Kong X, Ma L, Yang L, Chen Q, Xiang N, Yang Y, Hu X (2014) Quantitative proteomics analysis reveals that the nuclear cap-binding complex proteins Arabidopsis CBP20 and CBP80 modulate the salt stress response. J Proteome Res 13:2495–2510

    Article  CAS  PubMed  Google Scholar 

  21. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, New York

    Google Scholar 

  22. Li ZG, Yang SZ, Long WB, Yang GX, Shen ZZ (2013) Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant, Cell Environ 36:1564–1572

    Article  CAS  Google Scholar 

  23. Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ, Chu C (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158:451–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lv X, Pu XJ, Qin GW, Zhu T, Lin HH (2014) The roles of autophagy in development and stress responses in Arabidopsis thaliana. Apoptosis 19:905–921

    Article  CAS  PubMed  Google Scholar 

  26. Mannuss A, Trapp O, Puchta H (2012) Gene regulation in response to DNA damage. Biochim Biophys Acta 1819:154–165

    Article  CAS  PubMed  Google Scholar 

  27. McCormack ML, Guo D (2014) Impacts of environmental factors on fine root lifespan. Front Plant Sci 5:205

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mok YY, Atan MS, Yoke Ping C, Zhong Jing W, Bhatia M, Moochhala S, Moore PK (2004) Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol 143:881–889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Article  Google Scholar 

  30. Riemenschneider A, Wegele R, Schmidt A, Papenbrock J (2005) Isolation and characterization of a d-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J 272:1291–1304

    Article  CAS  PubMed  Google Scholar 

  31. Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159

    Article  CAS  PubMed  Google Scholar 

  32. Scuffi D, Núñez Á, Laspina N, Gotor C, Lamattina L, Garcia-Mata C (2014) Hydrogen sulfide generated by l-cysteine desulfhydrase acts upstream of nitric oxide to modulate ABA-dependent stomatal closure. Plant Physiol. doi:10.1104/pp.114.245373

    PubMed  Google Scholar 

  33. Shen JJ, Xing TJ, Yuan HH, Liu ZQ, Jin ZP, Zhang LP, Pei YX (2013) Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions. PLoS One 8:e77047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Shi HT, Ye TT, Chan ZL (2014) Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 74:99–107

    Article  CAS  PubMed  Google Scholar 

  35. Stone SL (2014) The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Frontiers Plant Sci 5: 135; doi:10.3389/fpls.2014.00135

  36. Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell Environ 35:259–270

    Article  CAS  Google Scholar 

  37. Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    Article  CAS  PubMed  Google Scholar 

  38. Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    Article  PubMed Central  PubMed  Google Scholar 

  39. Valledor L, Jorrin J (2011) Back to the basics: maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74:1–18

    Article  CAS  PubMed  Google Scholar 

  40. Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  CAS  PubMed  Google Scholar 

  41. Wilson PJ, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162

    Article  Google Scholar 

  42. Wirtz M, Hell R (2007) Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. Plant Cell 19:625–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798

    Article  CAS  PubMed  Google Scholar 

  44. Wrzaczek M, Brosche M, Kangasjarvi J (2013) ROS signaling loops–production, perception, regulation. Curr Opin Plant Biol 16:575–582

    Article  CAS  PubMed  Google Scholar 

  45. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Yang Y, Chen J, Liu Q, Ben C, Todd CD, Shi J, Yang Y, Hu X (2012) Comparative proteomic analysis of the thermotolerant plant Portulaca oleracea acclimation to combined high temperature and humidity stress. J Proteome Res 11:3605–3623

    Article  CAS  PubMed  Google Scholar 

  47. Yang LM, Tian DG, Todd CD, Luo YM, Hu XY (2013) Comparative proteome analyses reveal that nitric oxide is an important signal molecule in the response of rice to aluminum toxicity. J Proteome Res 12:1316–1330

    Article  CAS  PubMed  Google Scholar 

  48. Zhao C, Wang XQ, Yang FS (2014) Mechanisms underlying flower color variation in Asian species of Meconopsis: a preliminary phylogenetic analysis based on chloroplast DNA and anthocyanin biosynthesis genes. J Syst Evol 52:125–133

    Article  Google Scholar 

  49. Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhu Y, Dong AW, Shen WH (2012) Histone variants and chromatin assembly in plant abiotic stress responses. Biochim Biophys Acta 1819:343–348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of Yang Yongping’s group for their help during sample collection. This work was supported by the Young Academic and Technical Leader Raising Foundation of Yunnan Province (No. 2012HB041), the project of innovation team of Yunnan Province, the National Natural Sciences Foundation of China (No. 31170256), and the Major State Basic Research Development Program (2010CB951700).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yongping Yang or Xiangyang Hu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Yang, L., Zhao, J. et al. Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau. Planta 241, 887–906 (2015). https://doi.org/10.1007/s00425-014-2209-9

Download citation

Keywords

  • Adaptation
  • H2S
  • Lamiophlomis
  • Proteomics