Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242–20247. doi:10.1073/pnas.1111902108
Article
PubMed Central
CAS
PubMed
Google Scholar
Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827. doi:10.1038/nature03608
Article
CAS
PubMed
Google Scholar
Alvarez JM, Vidal EA, Gutierrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15:185–191. doi:10.1016/j.pbi.2012.03.009
Article
CAS
PubMed
Google Scholar
Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029. doi:10.1111/j.1365-313X.2007.03210.x
Article
CAS
PubMed
Google Scholar
Awad AA, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul 48:221–227. doi:10.1007/s10725-006-0009-3
CAS
Google Scholar
Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060. doi:10.1093/jxb/erq335
Article
PubMed Central
CAS
PubMed
Google Scholar
Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhard D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017. doi:10.1111/j.1365-313X.2010.04385.x
Article
CAS
PubMed
Google Scholar
Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749. doi:10.1111/j.1365-313X.2007.03368.x
Article
CAS
PubMed
Google Scholar
Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206. doi:10.1146/annurev-arplant-042110-103849
Article
CAS
PubMed
Google Scholar
Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190. doi:10.1126/science.154.3753.1189
Article
CAS
PubMed
Google Scholar
Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372. doi:10.1016/j.tplants.2009.04.003
Article
CAS
PubMed
Google Scholar
Ejeta G, Gressel J (eds) (2007) Integrating new technologies for Striga control: towards ending the witch-hunt. World Scientific Publishing Co. Pte. Ltd., Singapore
Google Scholar
Foo E (2013) Auxin influences strigolactones in pea mycorrhizal symbiosis. J Plant Physiol 170:523–528. doi:10.1016/j.jplph.2012.11.002
Article
CAS
PubMed
Google Scholar
Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081. doi:10.1007/s00425-011-1516-7
Article
CAS
PubMed
Google Scholar
Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474. doi:10.1105/tpc.104.026716
Article
PubMed Central
CAS
PubMed
Google Scholar
Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76–87. doi:10.1093/mp/sss115
Article
CAS
PubMed
Google Scholar
Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu J-K (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043. doi:10.1016/j.cub.2005.10.016
Article
CAS
PubMed
Google Scholar
Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194. doi:10.1038/nature07271
Article
CAS
PubMed
Google Scholar
Hauck C, Müller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474–478. doi:10.1016/S0176-1617(11)80497-9
Article
CAS
Google Scholar
Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533
Article
PubMed Central
CAS
PubMed
Google Scholar
Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247. doi:10.1104/pp.106.092130
Article
PubMed Central
CAS
PubMed
Google Scholar
Jamil M, Kanampiu FK, Karaya H, Charnikhova T, Bouwmeester HJ (2012) Striga hermonthica parasitism in maize in response to N and P fertilisers. Field Crops Res 134:1–10. doi:10.1016/j.fcr.2012.03.015
Article
Google Scholar
Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026. doi:10.1104/pp.106.087676
Article
PubMed Central
CAS
PubMed
Google Scholar
Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J-P, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216. doi:10.1007/s00425-010-1310-y
Article
CAS
PubMed
Google Scholar
Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2007) Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225:907–918
Article
CAS
PubMed
Google Scholar
Koegel S, Boller T, FL M, Wiemken A, Courty PE (2013) Rapid nitrogen transfer in the Sorghum bicolor-Glomus mosseae arbuscular mycorrhizal symbiosis. Plant Signal Behav 8:e25229. doi:10.4161/psb.25229
Article
PubMed Central
PubMed
Google Scholar
Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, Bécard G, Puech-Pagès V, Dor BB, Resnick N, Wininger S, Kapulnik Y (2011) Light is a positive regulator of strigolactone levels in tomato roots. J Plant Physiol 168:1993–1996. doi:10.1016/j.jplph.2011.05.022
Article
CAS
PubMed
Google Scholar
López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874. doi:10.1111/j.1469-8137.2008.02406.x
Article
PubMed
Google Scholar
Marzec M, Muszynska A, Gruszka D (2013) The role of strigolactones in nutrient-stress responses in plants. Int J Mol Sci 14:9286–9304. doi:10.3390/ijms14059286
Article
PubMed Central
PubMed
Google Scholar
Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci USA 111:6092–6097. doi:10.1073/pnas.1322045111
Article
PubMed Central
CAS
PubMed
Google Scholar
Nanamori M, Shinano T, Wasaki J, Yamamura T, Rao IM, Osaki M (2004) Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, Brachiaria hybrid cultivar Mulato compared with rice. Plant Cell Physiol 45:460–469. doi:10.1093/pcp/pch056
Article
CAS
PubMed
Google Scholar
Pant BD, Buhtz A, Kehr J, Scheible W-R (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738. doi:10.1111/j.1365-313X.2007.03363.x
Article
PubMed Central
CAS
PubMed
Google Scholar
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556. doi:10.1038/nature07723
Article
CAS
PubMed
Google Scholar
Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734. doi:10.1104/pp.110.166645
Article
PubMed Central
CAS
PubMed
Google Scholar
Siame BP, Weerasuriya Y, Wood K, Ejeta G, Butler LG (1993) Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J Agric Food Chem 41:1486–1491. doi:10.1021/jf00033a025
Article
CAS
Google Scholar
Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL, Karunairetnam S, Gleave AP, Clark DG, Klee HJ (2005) The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17:746–759
Article
PubMed Central
CAS
PubMed
Google Scholar
Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, Carcía-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385. doi:10.1016/j.soilbio.2009.11.007
Article
CAS
Google Scholar
Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot. doi:10.1093/jxb/eru029 (in press)
Google Scholar
Tadano T, Tanaka A (1980) The effect of low phosphate concentrations in culture medium on early growth of several crop plants (in Japanese, translated by the authors). Jpn J Soil Sci Plant Nutr 51:399–404
CAS
Google Scholar
Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117. doi:10.1093/pcp/pcr176
Article
CAS
PubMed
Google Scholar
Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749. doi:10.1038/nchembio.435
Article
CAS
PubMed
Google Scholar
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200. doi:10.1038/nature07272
Article
CAS
PubMed
Google Scholar
Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126. doi:10.1093/pcp/pcq084
Article
PubMed Central
CAS
PubMed
Google Scholar
Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687. doi:10.1016/j.cell.2009.01.046
Article
CAS
PubMed
Google Scholar
Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie X, Yoneyama K, Kusumoto D, Yamada Y, Takeuchi Y, Sugimoto Y, Yoneyama K (2008) Sorgomol, germination stimulant for root parasitic plants, produced by Sorghum bicolor. Tetrahedron Lett 49:2066–2068. doi:10.1016/j.tetlet.2008.01.131
Article
CAS
Google Scholar
Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K (2013) Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant 6:153–163. doi:10.1093/mp/sss139
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399–408. doi:10.1007/s00425-014-2096-0
Article
CAS
PubMed
Google Scholar
Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007a) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132. doi:10.1007/s00425-007-0600-5
Article
CAS
PubMed
Google Scholar
Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007b) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038. doi:10.1007/s00425-006-0410-1
Article
CAS
PubMed
Google Scholar
Yoneyama K, Xie X, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2011) Characterization of strigolactones exuded by Asteraceae plants. Plant Growth Regul 65:495–504. doi:10.1007/s10725-011-9620-z
Article
CAS
Google Scholar
Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207. doi:10.1007/s00425-011-1568-8
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoneyama K, Xie X, Kisugi T, Nomura T, Yoneyama K (2013) Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta 238:885–894. doi:10.1007/s00425-013-1943-8
Article
CAS
PubMed
Google Scholar