Skip to main content
Log in

The B-ring hydroxylation pattern of anthocyanins can be determined through activity of the flavonoid 3′-hydroxylase on leucoanthocyanidins

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

In contrast to current knowledge, the B -ring hydroxylation pattern of anthocyanins can be determined by the hydroxylation of leucoanthocyanidins in the 3′ position by flavonoid 3’-hydroxylase.

Abstract

The cytochrome P450-dependent monooxygenases flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) are key flavonoid enzymes that introduce B-ring hydroxyl groups in positions 3′ or 3′ and 5′, respectively. The degree of B-ring hydroxylation is the major determinant of the hue of anthocyanin pigments. Numerous studies have shown that F3′H and F3′5′H may act on more than one type of anthocyanin precursor in addition to other flavonoids, but it has been unclear whether the anthocyanin precursor of the leucoanthocyanidin type can be hydroxylated as well. We have investigated this in vivo using feeding experiments and in vitro by studies with recombinant F3′H. Feeding leucoanthocyanidins to petal tissue with active hydroxylases resulted in anthocyanidins with increased B-ring hydroxylation relative to the fed leucoanthocyanidin, indicating the presence of 3′-hydroxylating activity (in Petunia and Eustoma grandiflorum Grise.) and 3′,5′-hydroxylating activity (in E. grandiflorum Grise.). Tetcyclacis, a specific inhibitor of cytochrome P450-dependent enzymes, abolished this activity, excluding involvement of unspecific hydroxylases. While some hydroxylation could be a consequence of reverse catalysis by dihydroflavonol 4-reductase (DFR) providing an alternative substrate, hydroxylating activity was still present in fed petals of a DFR deficient petunia line. In vitro conversion rates and kinetic data for dLPG (a stable leucoanthocyanidin substrate) were comparable to those for other flavonoids for nine of ten recombinant flavonoid hydroxylases from various taxa. dLPG was a poor substrate for only the recombinant Fragaria F3′Hs. Thus, the B-ring hydroxylation pattern of anthocyanins can be determined at all precursor levels in the pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CY:

Cyanidin

DFR:

Dihydroflavonol 4-reductase

dLCy:

5-deoxyleucocyanidin

dLPG:

5-deoxyleucopelargonidin

DP:

Delphinidin

F3´H:

Flavonoid 3´-hydroxylase

F3´5H:

Flavonoid 3´5´-hydroxylase

HBR:

Heidi Blue Rim

LCY:

Leucocyanidin

LPG:

Leucopelargonidin

PG:

Pelargonidin

TET:

Tetcyclacis

References

  • Ausubel F, Bahnsen K, Hanson M, Mitchell AS, Smith HJ (1980) Cell and tissue culture of haploid and diploid petunia ‘Mitchell’. Plant Mol Biol Newsl 1:26–32

    Google Scholar 

  • Brugliera F, Barri-Rewell G, Holton TA, Mason JG (1999) Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 19:441–451

    Article  PubMed  CAS  Google Scholar 

  • Brugliera F, Demelis L, Koes R, Tanaka Y (2010) Genetic sequences having methyltransferases activity and uses thereof. USA Patent US7807877B2, 5 Oct 2010

  • Burbulis IE, Winkel-Shirley B (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci USA 96:12929–12934

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cornu A, Farcy E (1981) Genotype of petunia Mitchell line. Plant Mol Biol Newslett 2:58–109

    Google Scholar 

  • Davies KM, Marie Bradley J, Schwinn KE, Markham KR, Podivinsky E (1993) Flavonoid biosynthesis in flower petals of five lines of lisianthus (Eustoma grandiflorum Grise.). Plant Sci 95:67–77

    Article  CAS  Google Scholar 

  • Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM (2003) Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131:259–268

    Article  CAS  Google Scholar 

  • De Vlaming P (1981) Genotype determination of Petunia ‘Mitchell’with respect to some flower colour genes. Plant Mol Biol News 2:106–108

    Google Scholar 

  • Fischer TC, Halbwirth H, Meisel B, Stich K, Forkmann G (2003) Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism. Arch Biochem Biophys 412:223–230

    Article  PubMed  CAS  Google Scholar 

  • Forkmann G, Heller W (1999) Biosynthesis of flavonoids. In: Barton D, Nakanishi K, Meth-Cohn O, Sankawa U (eds) Comprehensive natural products chemistry, vol 1. Elsevier Science, Amsterdam, pp 713–748

    Chapter  Google Scholar 

  • Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotech 12:155–160

    Article  PubMed  CAS  Google Scholar 

  • Gosch C, Nagesh KM, Thill J, Miosic S, Plaschil S, Milosevic M, Olbricht K, Ejaz S, Rompel A, Stich K, Halbwirth H (2014) Isolation of dihydroflavonol 4-reductase cDNA clones from Angelonia × angustifolia and heterologous expression as GST fusion protein in Escherichia coli. Plos One, in press

  • Halbwirth H (2010) The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. Int J Mol Sci 11:595–621

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Halbwirth H, Fischer TC, Schlangen K, Rademacher W, Schleifer KJ, Forkmann G, Stich K (2006a) Screening for inhibitors of 2-oxoglutarate-dependent dioxygenases: flavanone 3 [beta]-hydroxylase and flavonol synthase. Plant Sci 171:194–205

    Article  CAS  Google Scholar 

  • Halbwirth H, Kahl S, Jager W, Reznicek G, Forkmann G, Stich K (2006b) Synthesis of (14C)-labeled 5-deoxyflavonoids and their application in the study of dihydroflavonol/leucoanthocyanidin interconversion by dihydroflavonol 4-reductase. Plant Sci 170:587–595

    Article  CAS  Google Scholar 

  • Harborne J (ed) (1976) Functions of flavonoids in plants, vol 1. Chemistry and biochemistry of plant pigments. Academic Press Inc Ltd, London

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  PubMed  CAS  Google Scholar 

  • Heller W, Britsch L, Forkmann G, Grisebach H (1985a) Leucoanthocyanidins as intermediates in anthocyanidin biosynthesis in flowers of Matthiola incana R. Br Planta 163:191–196

    Article  CAS  Google Scholar 

  • Heller W, Forkmann G, Britsch L, Grisebach H (1985b) Enzymatic reduction of (+)-dihydroflavonols to flavan-3, 4-cis-diols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis. Planta 165:284–287

    Article  PubMed  CAS  Google Scholar 

  • Nakajima J-I, Tanaka Y, Yamazaki M, Saito K (2001) Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J Biol Chem 276:25797–25803

    Article  Google Scholar 

  • Johnson ET, Yi H, Shin B, Oh B-J, Cheong H, Choi G (1999) Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant J 19:81–85

    Article  PubMed  CAS  Google Scholar 

  • Johnson ET, Ryu S, Yi H, Shin B, Cheong H, Choi G (2001) Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J 25:325–333

    Article  PubMed  CAS  Google Scholar 

  • Kamsteeg J, Brederode JV, Verschuren PM, Nigtevecht GV (1981) Identification, properties and genetic control of p-coumaroylCoenzyme A, 3-hydroxylase isolated from petals of Silene dioica. Z Pflanzenphysiol 102:435–442

    Article  CAS  Google Scholar 

  • Markham KR (1982) Techniques of flavonoid identification. Academic Press, London

    Google Scholar 

  • Markham KR, Ofman DJ (1993) Lisianthus flavonoid pigments and factors influencing their expression in flower colour. Phytochemistry 34:679–685

    Article  PubMed  CAS  Google Scholar 

  • Menting JG, Scopes RK, Stevenson TW (1994) Characterization of flavonoid 3′,5′-hydroxylase in microsomal membrane fraction of Petunia hybrida flowers. Plant Physiol 106:633–642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nielsen KM, Podivinsky E (1997) cDNA cloning and endogenous expression of a flavonoid 3′ 5′-hydroxylase from petals of lisianthus (Eustoma grandiflorum). Plant Sci 129:167–174

    Article  CAS  Google Scholar 

  • Roberts RJ, Vaughan P (1971) Hydroxylation of kaempferol, dihydrokaempferol and naringenin by a phenolase preparation from spinach beet. Phytochemistry 10:2649–2652

    Article  CAS  Google Scholar 

  • Ruhnau B, Forkmann G (1988) Flavan-3, 4-diols in anthocyanin biosynthesis, enzymatic formation with flower extracts from Callistephus chinensis. Phytochemistry 27:1035–1039

    Article  CAS  Google Scholar 

  • Sandermann H, Strominger JL (1972) Purification and properties of C55-isoprenoid alcohol phosphokinase from Staphylococcus aureus. J Biol Chem 247:5123–5131

    PubMed  CAS  Google Scholar 

  • Schill L, Grisebach H (1973) Properties of a phenolase preparation from cell suspension cultures of parsley. H-S Z Physiol Chem 354:1555–1562

    Article  CAS  Google Scholar 

  • Schlangen K, Miosic S, Topuz F, Muster G, Marosits T, Seitz C, Halbwirth H (2009) Chalcone 3-hydroxylation is not a general property of flavonoid 3′-hydroxylase. Plant Sci 177:97–102

    Article  CAS  Google Scholar 

  • Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B (2000) Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem 381:749–753

    Article  PubMed  CAS  Google Scholar 

  • Schwinn KE, Markham KR, Giveno NK (1993) Floral flavonoids and the potential for pelargonidin biosynthesis in commercial chrysanthemum cultivars. Phytochemistry 35:145–150

    Article  Google Scholar 

  • Seitz C, Eder C, Deiml B, Kellner S, Martens S, Forkmann G (2006) Cloning, functional identification and sequence analysis of flavonoid 3′-hydroxylase and flavonoid 3′, 5′-hydroxylase cDNAs reveals independent evolution of flavonoid 3′, 5′-hydroxylase in the Asteraceae family. Plant Mol Biol 61:365–381

    Article  PubMed  CAS  Google Scholar 

  • Stafford HA, Lester HL, Porter LJ (1985) Chemical and enzymatic synthesis of monomeric procyanidins (leucocyanidins or 3′, 4′, 5, 7-tetrahydroxyflavan-3, 4-diols) from (2R,3R)-dihydroquercetin. Phytochemistry 24:333–338

    Article  CAS  Google Scholar 

  • Stich K, Ebermann R, Forkmann G (1988) Einfluss Cytochrom P-450 spezifischer Inhibitoren auf die Aktivität von Flavonoid 3′-Hydroxylase und Flavonsynthase II bei verschiedenen Pflanzen. Phyton (Austria) 28:237–247

    CAS  Google Scholar 

  • Stotz G, Spribille R, Forkmann G (1984) Flavonoid biosynthesis in flowers of Verbena hybrida. J Plant Physiol 116:173–183

    Article  PubMed  CAS  Google Scholar 

  • Thill J, Regos I, Farag MA, Ahmad AF, Kusek J, Castro A, Schlangen K, Carbonero CH, Gadjev IZ, Smith LMJ, Halbwirth H, Treutter D, Stich K (2012) Polyphenol metabolism provides a screening tool for beneficial effects of Onobrychis viciifolia (sainfoin). Phytochemistry 82:67–80

    Article  PubMed  CAS  Google Scholar 

  • Thill J, Miosic S, Gotame TP, Mikulic-Petkovsek M, Gosch C, Veberic R, Preuss A, Schwab W, Stampar F, Stich K (2013) Differential expression of flavonoid 3′-hydroxylase during fruit development establishes the different B-ring hydroxylation patterns of flavonoids in Fragaria × ananassa and Fragaria vesca. Plant Physiol Biochem 72:72–78

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107:142–149

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund FWF [Project P24331-B16]. We thank C. Seitz from the former Chair of Floriculture Crops and Horticultural Plant Breeding, Technical University of Munich, Freising for providing some of the F3′H cDNA clones, and W. Rademacher, BASF, for the gift of tecyclacis. We thank C. Martin for the suggestion of including a DFR mutant in the feeding experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Halbwirth.

Additional information

Special topic: Anthocyanins. Guest editor: Stefan Martens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 25128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwinn, K., Miosic, S., Davies, K. et al. The B-ring hydroxylation pattern of anthocyanins can be determined through activity of the flavonoid 3′-hydroxylase on leucoanthocyanidins. Planta 240, 1003–1010 (2014). https://doi.org/10.1007/s00425-014-2166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2166-3

Keywords

Navigation