, Volume 241, Issue 1, pp 57–67 | Cite as

Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128

  • Yanlin Pan
  • Xin Ma
  • Hanwen Liang
  • Qian Zhao
  • Dengyun Zhu
  • Jingjuan Yu
Original Article


Main conclusion

pF128 drives GUS specifically expressed in transgenic seeds of foxtail millet and Zea mays with higher activity than the constitutive CaMV35S promoter and the maize seed-specific 19Z promoter.


Foxtail millet (Setaria italica), a member of the Poaceae family, is an important food and fodder crop in arid regions. Foxtail millet is an excellent C4 crop model owing to its small genome (~490 Mb), self-pollination and availability of a complete genome sequence. F128 was isolated from a cDNA library of foxtail millet immature seeds. Real-time PCR analysis revealed that F128 mRNA was specifically expressed in immature and mature seeds. The highest F128 mRNA level was observed 5 days after pollination and gradually decreased as the seed matured. Sequence analysis suggested that the protein encoded by F128 is likely a protease inhibitor/seed storage protein/lipid-transfer protein. The 1,053 bp 5′ flanking sequence of F128 (pF128) was isolated and fused to the GUS reporter gene. The corresponding vector was then transformed into Arabidopsis thaliana, foxtail millet and Zea mays. GUS analysis revealed that pF128 drove GUS expression efficiently and specifically in the seeds of transgenic Arabidopsis, foxtail millet and Zea mays. GUS activity was also detected in Arabidopsis cotyledons. Activity of pF128 was higher than that observed for the constitutive CaMV35S promoter and the maize seed-specific 19 Zein (19Z) promoter. These results indicate that pF128 is a seed-specific promoter. Its application is expected to be of considerable value in plant genetic engineering.


Foxtail millet Lipid-transfer proteins Promoter Embryo Endosperm transfer cell 



This work was supported by the National Transgenic Major Program of China (grant no. 2008ZX08003-002, 2009ZX08009093-002, 2011ZX08003-002 and 2013ZX08003-002).

Supplementary material

425_2014_2164_MOESM1_ESM.docx (960 kb)
Supplementary material 1 (DOCX 960 kb)
425_2014_2164_MOESM2_ESM.pdf (106 kb)
Supplementary material 2 (PDF 106 kb)


  1. Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Schewry P, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319–327CrossRefGoogle Scholar
  2. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201Belanger FC, Kriz AL (1989) Molecular characterization of the major maize embryo globulin encoded by the Glb1 gene. Plant Physiol 91:636–643Google Scholar
  3. Belanger FC, Kriz AL (1989) Molecular characterization of the major maize embryo globulin encoded by the Glb1 gene. Plant Physiol 91:636–643PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bendtsen JD, Nielsen H, Heijne GV, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
  5. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Kerrie B, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C, Herrera MM, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561PubMedCrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  7. Cai G, Faleri C, Casino CD, Hueros G, Thompson RD, Cresti M (2002) Subcellular localisation of BETL-1, -2 and -4 in Zea mays L. endosperm. Sex Plant Reprod 15:85–98CrossRefGoogle Scholar
  8. Chung K, Hwang S, Hahn B, Kim K, Kim J, Kim Y, Yang J, Ha S (2008) Authentic seed-specific activity of the Perilla oleosin 19 gene promoter in transgenic Arabidopsis. Plant Cell Rep 27:29–37PubMedCrossRefGoogle Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  10. Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141PubMedCentralPubMedCrossRefGoogle Scholar
  11. Ezcurra IS, ME M, Wycliffe P, Lberg KS, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709PubMedCrossRefGoogle Scholar
  12. Ezcurra I, Wycliffe P, Nehlin L, Ellerstrom M, Rask L (2000) Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J 24:57–66PubMedCrossRefGoogle Scholar
  13. Fujiwara T, Nambara E, Yamagishi K, Goto DB, Naito S (2002) Storage proteins. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, pp 1–12Google Scholar
  14. Giovinazzo G, Manzocchi LA, Bianchi MW, Coraggio I, Viotti A (1992) Functional analysis of the regulatory region of a zein gene in transiently transformed protoplasts. Plant Mol Biol 19:257–263PubMedCrossRefGoogle Scholar
  15. Gutierrez-Marcos JF, Costa LM, Biderre-Petit C, Khbaya B, O’Sullivan DM, Wormald M, Perez P, Dickinson HG (2004) Maternally expressed gene1 is a novel maize endosperm transfer cell specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 16:1288–1301PubMedCentralPubMedCrossRefGoogle Scholar
  16. Hood EE, Bailey MR, Beifuss K, Magallanes-Lundback M, Horn ME, Callaway E, Drees C, Delaney DE, Clough R, Howard JA (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140PubMedCrossRefGoogle Scholar
  17. Horvath H, Huang J, Wong O, Kohl E, Okita T, Kannangara CG, von Wettstein D (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci USA 97:1914–1919PubMedCentralPubMedCrossRefGoogle Scholar
  18. Huang AH (1996) Oleosins and oil bodies in seeds and other organs. Plant Physiol 110:1055–1061PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hueros G, Varotto S, Salamini F, Thompson RD (1995) Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize. Plant Cell 7:747–757PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hueros G, Rahfeld J, Salamini F, Thompson R (1998) A maize FK506-sensitive immunophilin, mzFKBP-66, is a peptidylproline cis-trans-isomerase that interacts with calmodulin and a 36-kDa cytoplasmic protein. Planta 205:121–131PubMedCrossRefGoogle Scholar
  21. Hwang YS, Yang D, McCullar C, Wu L, Chen L, Pham P, Nandi S, Huang N (2002) Analysis of the rice endosperm-specific globulin promoter in transformed rice cells. Plant Cell Rep 20:842–847CrossRefGoogle Scholar
  22. Ingle J, Beitz D, Hageman RH (1965) Changes in composition during development and maturation of maize seeds. Plant Physiol 40:835PubMedCentralPubMedCrossRefGoogle Scholar
  23. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedCentralPubMedGoogle Scholar
  24. Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Lu T, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961PubMedCrossRefGoogle Scholar
  25. Kader J (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol 47:627–654CrossRefGoogle Scholar
  26. Kader J (1997) Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci 2:66–70CrossRefGoogle Scholar
  27. Kalla R, Shimamoto K, Potter R, Nielsen PS, Linnestad C, Olsen OA (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J 6:849–860PubMedCrossRefGoogle Scholar
  28. Kim SY, Chung HJ, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11:1237–1251Google Scholar
  29. Kovalchuk N, Smith J, Pallotta M, Singh R, Ismagul A, Eliby S, Bazanova N, Milligan AS, Hrmova M, Langridge P, Lopato S (2009) Characterization of the wheat endosperm transfer cell-specific protein TaPR60. Plant Mol Biol 71:81–98PubMedCrossRefGoogle Scholar
  30. Kovalchuk N, Li M, Wittek F, Reid N, Singh R, Shirley N, Ismagul A, Eliby S, Johnson A, Milligan AS, Hrmova M, Langridge P, Lopato S (2010) Defensin promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnol J 8:47–64PubMedCrossRefGoogle Scholar
  31. Kovalchuk N, Smith J, Bazanova N, Pyvovarenko T, Singh R, Shirley N, Ismagul A, Johnson A, Milligan AS, Hrmova M, Langridge P, Lopato S (2012) Characterization of the wheat gene encoding a grain-specific lipid transfer protein TdPR61, and promoter activity in wheat, barley and rice. J Exp Bot 63:2025–2040PubMedCrossRefGoogle Scholar
  32. Kridl JC, McCarter DW, Rose RE, Scherer DE, Knutzon DS, Radke SE, Knauf VC (1991) Isolation and characterization of an expressed napin gene from Brassica rapa. Seed Sci Res 1:209–219CrossRefGoogle Scholar
  33. Kriz AL, Boston RS, Larkins BA (1987) Structural and transcriptional analysis of DNA sequences flanking genes that encode 19 kilodalton zeins. Mol Gen Genet 207:90–98PubMedCrossRefGoogle Scholar
  34. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouz P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327PubMedCentralPubMedCrossRefGoogle Scholar
  35. Li Y (1997) Millet breeding. China agriculture press, BeijinGoogle Scholar
  36. Li M, Singh R, Bazanova N, Milligan AS, Shirley N, Langridge P, Lopato S (2008) Spatial and temporal expression of endosperm transfer cell-specific promoters in transgenic rice and barley. Plant Biotechnol J 6:465–476PubMedCrossRefGoogle Scholar
  37. Liu S, Kriz A (1996) Tissue-specific and ABA-regulated Maize Glb1 gene expression in transgenic tobacco. Plant Cell Rep 16:158–162PubMedCrossRefGoogle Scholar
  38. Liu Y, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681PubMedCrossRefGoogle Scholar
  39. Liu Y, Yu J, Ao G, Zhao Q (2007) Factors influencing Agrobacterium-mediated transformation of foxtail millet (setraria italica). Chin J Biochem Mol 23:531–536Google Scholar
  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  41. Magnard J, Lehouque GL, Massonneau A, Frangne N, Heckel T, Gutierrez-Marcos JF, Perez P, Dumas C, Rogowsky PM (2003) ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization. Plant Mol Biol 53:821–836PubMedCrossRefGoogle Scholar
  42. Maitz M, Santandrea G, Zhang Z, Lal S, Hannah LC, Salamini F, Thompson RD (2000) Rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J 23:29–42PubMedCrossRefGoogle Scholar
  43. Motto M, Hartings H, Fracassetti M, Consonni G (2012) Grain quality-related traits in maize: gene identification and exploitation. Maydica 56:291–314Google Scholar
  44. Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454PubMedCrossRefGoogle Scholar
  45. Panaud O (2006) Foxtail millet. In: Chittaranjan K (ed) Cereals and millets. Springer-Verlag, Heidelberg, pp 325–332CrossRefGoogle Scholar
  46. Qin F, Zhao Q, Ao G, Yu J (2008) Co-suppression of Si401, a maize pollen specific Zm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica 163:103–111Google Scholar
  47. Quattrocchio F, Tolk MA, Coraggio I, Mol JN, Viotti A, Koes RE (1990) The maize zein gene zE19 contains two distinct promoters which are independently activated in endosperm and anthers of transgenic Petunia plants. Plant Mol Biol 15:81–93Google Scholar
  48. Radke SE, Andrews BM, Moloney MM, Crouch ML, Kridl JC, Knauf VC (1988) Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor Appl Genet 75:685–694CrossRefGoogle Scholar
  49. Rascon-Cruz Q, Sinagawa-Garcia S, Osuna-Castro JA, Bohorova N, Paredes-Lopez O (2004) Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theor Appl Genet 108:335–342PubMedCrossRefGoogle Scholar
  50. Rasmussen TB, Donaldson IA (2006) Investigation of the endosperm-specific sucrose synthase promoter from rice using transient expression of reporter genes in guar seed tissue. Plant Cell Rep 25:1035–1042PubMedCrossRefGoogle Scholar
  51. Sanchez R, Sali A (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci USA 95:13597–13602PubMedCentralPubMedCrossRefGoogle Scholar
  52. Serna A, Maitz M, O’Connell T, Santandrea G, Thevissen K, Tienens K, Hueros G, Faleri C, Cai G, Lottspeich F (2001) Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue. Plant J 25:687–698PubMedCrossRefGoogle Scholar
  53. Smirnova OG, Kochetov AV (2012) Wheat promoter sequences for transgene expression. Russ J Genet: Applied Research 2:434–439CrossRefGoogle Scholar
  54. Soderman EM, Brocard IM, Lynch TJ, Finkelstein RR (2000) Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol 124:1752–1765PubMedCentralPubMedCrossRefGoogle Scholar
  55. Stalberg K, Ellerstom M, Ezcurra I, Ablov S, Rask L (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–519PubMedCrossRefGoogle Scholar
  56. Stoger E, Ma JKC, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173PubMedCrossRefGoogle Scholar
  57. Thompson RD, Hueros G, Becker H, Maitz M (2001) Development and functions of seed transfer cells. Plant Sci 160:775–783PubMedCrossRefGoogle Scholar
  58. Vicente-Carbajosa J, Carbonero P (2005) Seed maturation: developing an intrusive phase to accomplish a quiescent state. Int J Dev Biol 49:645–651PubMedCrossRefGoogle Scholar
  59. Wang D, Zhao Q, Zhu D, Ao G, Yu J (2006) Particle-bombardment-mediated co-transformation of maize with a lysine rich protein gene (sb401) from potato. Euphytica 150:75–85CrossRefGoogle Scholar
  60. Wang M, Pan Y, Li C, Liu C, Zhao Q, Ao G, Yu J (2011) Culturing of immature inflorescences and Agrobacterium-mediated transformation of foxtail millet (Setaria italica). Afri J Biotechnol 10:16466–16479Google Scholar
  61. Wang M, Liu C, Li S, Zhu D, Zhao Q, Yu J (2013) Improved Nutritive Quality and Salt Resistance in Transgenic Maize by Simultaneously Overexpression of a Natural Lysine-Rich Protein Gene, SBgLR, and an ERF Transcription Factor Gene, TSRF1. Int J Mol Sci 14(5):9459–9474PubMedCentralPubMedCrossRefGoogle Scholar
  62. Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F (1999) Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol 40:1–12PubMedCrossRefGoogle Scholar
  63. Weigel D, Glazebrook J (2002) Arabidopsis: a Laboratory Manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  64. Wu C, Washida H, Onodera Y, Harada K, Takaiwa F (2000) Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J 23:415–421PubMedCrossRefGoogle Scholar
  65. Xue J, Yu J, Zhao Q, Zhu D, Ao G (2004) Cloning and Characterization of Seed-specific Expression f128 Gene in Setaria italica. J Agri Biotechnol. doi: 10.3969/j.issn.1674-7968.2004.05.004 Google Scholar
  66. Yu J, Peng P, Zhang X, Zhao Q, Zhu D, Sun X, Liu J, Ao G (2004) Seed-specific expression of the lysine-rich protein sb401 gene significantly increases both lysine and total protein content in maize seeds. Mol Breeding 14:1–7CrossRefGoogle Scholar
  67. Zavallo D, Bilbao ML, Hopp HE, Heinz R (2010) Isolation and functional characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.). Plant Cell Rep 29:239–248PubMedCrossRefGoogle Scholar
  68. Zee SY, O’Brien TP (1971) Aleurone transfer cells and other structural features of the spikelet of millet. Aust J Biol Sci 24:391–395Google Scholar
  69. Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554PubMedCrossRefGoogle Scholar
  70. Zheng Y, Wang Z (2010) Current opinions on endosperm transfer cells in maize. Plant Cell Rep 29:935–942PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yanlin Pan
    • 1
  • Xin Ma
    • 1
  • Hanwen Liang
    • 1
  • Qian Zhao
    • 1
  • Dengyun Zhu
    • 1
  • Jingjuan Yu
    • 1
  1. 1.State Key Laboratory of Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina

Personalised recommendations