Skip to main content
Log in

Expression patterns and protein structure of a lipid transfer protein END1 from Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Arabidopsis END1-LIKE (AtEND1) was identified as a homolog of the barley endosperm-specific gene END1 and provides a model for the study of this class of genes and their products. The END1 is expressed in the endosperm transfer cells (ETC) of grasses. The ETC are responsible for transfer of nutrients from maternal tissues to the developing endosperm. Identification of several ETC-specific genes encoding lipid transfer proteins (LTP), including the END1, provided excellent markers for identification of ETC during seed development. To understand how AtEND1 forms complexes with lipid molecules, a three-dimensional (3D) molecular model was generated and reconciled with AtEND1 function. The spatial and temporal expression patterns of AtEND1 were examined in transgenic Arabidopsis plants transformed with an AtEND1 promoter-GUS fusion construct. The AtEND1 promoter was found to be seed and pollen specific. In contrast to ETC-specific expression of homologous genes in wheat and barley, expression of AtEND1 is less specific. It was observed in ovules and a few gametophytic tissues. A series of AtEND1 promoter deletions fused to coding sequence (CDS) of the uidA were transformed in Arabidopsis and the promoter region responsible for AtEND1 expression was identified. A 163 bp fragment of the promoter was found to be sufficient for both spatial and temporal patterns of expression reflecting that of AtEND1. Our data suggest that AtEND1 could be used as a marker gene for gametophytic tissues and developing endosperm. The role of the gene is unclear but it may be involved in fertilization and/or endosperm cellularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CZE:

Chalazal endosperm

DAP:

Days after pollination

END1:

Endosperm1

EST:

Expressed sequence tags

ETC:

Endosperm transfer cells

GUS:

uidA/5-bromo-4-chloro-3-indolyl-β-d-glucuronidase

LTP:

Lipid transfer protein

MCE:

Micropylar endosperm

nsLTP:

Nonspecific lipid transfer protein

PEN:

Peripheral endosperm

References

  • Arondel V, Vergnolle C, Cantrel C, Kader JC (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci 157:1–12

    Article  CAS  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  CAS  PubMed  Google Scholar 

  • Becraft PW, Gutierrez-Marcos J (2012) Endosperm development: dynamic processes and cellular innovations underlying sibling altruism. Wiley Interdiscip Rev Dev Biol 1:579–593

    Article  CAS  PubMed  Google Scholar 

  • Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE:YFP fusion protein in Arabidopsis show that syncytial endosperm Is divided in mitotic domains. Plant Cell 13:495–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, Goodrich J, Renou JP, Grini PE, Colot V, Schnittger A (2011) Polycomb repressive complex 2 controls the mmbryo-to-seedling phase transition. PLoS Genet 7:e1002014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown RC, Lemmon BE, Nguyen H, Olsen OA (1999) Development of endosperm in Arabidopsis thaliana. Sex Plant Reprod 12:32–42

    Article  Google Scholar 

  • Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP (1997) Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci 53:621–645

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin MA, Horner HT, Palmer RG (1994) Early endosperm, embryo, and ovule development in (Glycine max L.) Merr. Int J Plant Sci 155:421–436

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • de Ruijter NCA, Verhees J, Leeuwen W, Krol AR (2003) Evaluation and comparison of the GUS, LUC and GFP reporter system for gene expression studies in plants. Plant Biol 5:103–115

    Article  Google Scholar 

  • Doan DNP, Linnestad C, Olsen OA (1996) Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers. Plant Mol Biol 31:877–886

    Article  CAS  PubMed  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134:1080–1087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579

    Article  CAS  PubMed  Google Scholar 

  • Ginalski K, Elofsson A, Fischer D, Rychlewski L (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19:1015–1018

    Article  CAS  PubMed  Google Scholar 

  • Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol 9:227–238

    Article  CAS  PubMed  Google Scholar 

  • Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE, Grossniklaus U, Berger F (2004) Identification of new members of fertilisation independent seed Polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971–2981

    Article  CAS  PubMed  Google Scholar 

  • Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500–W502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • José-Estanyol M, Gomis-Rüth FX, Puigdomènech P (2004) The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42:355–365

    Article  PubMed  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Karplus K (2009) SAM-T08, HMM-based protein structure prediction. Nucleic Acids Res 37:W492–W497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keith K, Kraml M, Dengler NG, McCourt P (1994) fusca3: a heterochronic mutation affecting late embryo development in Arabidopsis. Plant Cell 6:589–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelley L, MacCallum R, Sternberg M (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520

    Article  CAS  PubMed  Google Scholar 

  • Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovalchuk N, Smith J, Pallotta M, Singh R, Ismagul A, Eliby S, Bazanova N, Milligan A, Hrmova M, Langridge P, Lopato S (2009) Characterization of the wheat endosperm transfer cell-specific protein TaPR60. Plant Mol Biol 71:81–98

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk N, Li M, Wittek F, Reid N, Singh R, Shirley N, Ismagul A, Eliby S, Johnson A, Milligan AS, Hrmova M, Langridge P, Lopato S (2010) Defensin promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnol J 8:47–64

    Article  CAS  PubMed  Google Scholar 

  • Lascombe M-B, Bakan B, Buhot N, Marion D, Blein J-P, Larue V, Lamb C, Prangé T (2008) The structure of “defective in induced resistance” protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein. Protein Sci 17:1522–1530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laskowski R, MacArthur M, Moss D, Thornton J (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:191–283

    Article  Google Scholar 

  • Li M, Singh R, Bazanova N, Milligan AS, Shirley N, Langridge P, Lopato S (2008) Spatial and temporal expression of endosperm transfer cell-specific promoters in transgenic rice and barley. Plant Biotechnol J 6:465–476

    Article  CAS  PubMed  Google Scholar 

  • Li M, Lopato S, Kovalchuk N, Langridge P (2013) Functional genomics of seed development in cereals. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Netherlands, pp 215–245

    Chapter  Google Scholar 

  • Lid SE, Al RH, Krekling T, Meeley RB, Ranch J, Opsahl-Ferstad HG, Olsen OA (2004) The maize disorganized aleurone layer 1 and 2 (dil1, dil2) mutants lack control of the mitotic division plane in the aleurone layer of developing endosperm. Planta 218:370–378

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Bilodeau P, Dennis E, Peacock W, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97:10637–10642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson J, Cherukuri P, DeWeese-Scott C, Geer L, Gwadz M, He S, Hurwitz D, Jackson J, Ke Z, Lanczycki C, Liebert C, Liu C, Lu F, Marchler G, Mullokandov M, Shoemaker B, Simonyan V, Song J, Thiessen P, Yamashita R, Yin J, Zhang D, Bryant S (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matthews PR, Wang M-B, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202

    Article  CAS  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  • Molina A, García-Olmedo F (1997) Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J 12:669–675

    Article  CAS  PubMed  Google Scholar 

  • Monjardino P, Rocha S, Tavares A, Fernandes R, Sampaio P, Salema R, Câmara Machado A (2013) Development of flange and reticulate wall ingrowths in maize (Zea mays L.) endosperm transfer cells. Protoplasma 250:495–503

    Article  PubMed  Google Scholar 

  • Ogawa M, Hiraoka Y, Taniguchi K, Aiso S (1998) Cloning and expression of a human/mouse Polycomb group gene, ENX-2/Enx-2. Biochem Biophys Acta 1395:151–158

    CAS  PubMed  Google Scholar 

  • Olsen OA (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:S214–S227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Otegui MS, Mastronarde DN, Kang B-H, Bednarek SY, Staehelin LA (2001) Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13:2033–2051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pasquato L, Pengo P, Scrimin P (2005) Nanozymes: functional nanoparticle-based catalysts. Supramol Chem 17:163–171

    Article  CAS  Google Scholar 

  • Pei J, Kim B-H, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36:2295–2300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prestridge D (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7:203–206

    CAS  PubMed  Google Scholar 

  • Royo J, Gómez E, Sellam O, Gerentes D, Paul W, Hueros G (2014) Two maize END-1 orthologs, BETL9 and BETL9like, are transcribed in a non-overlapping spatial pattern on the outer surface of the developing endosperm. Front Plant Sci 5:180

    Article  PubMed Central  PubMed  Google Scholar 

  • Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  Google Scholar 

  • Singh KB (1998) Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol 118:1111–1120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  CAS  PubMed  Google Scholar 

  • Skriver K, Leah R, Muller-Uri F, Olsen F, Mundy J (1992) Structure and expression of the barley lipid transfer protein gene Ltp1. Plant Mol Biol 18:585–589

    Article  CAS  PubMed  Google Scholar 

  • Sørensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, Jürgens G, Somerville C, Lepiniec L, Berger F (2002) Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129:5567–5576

    Article  PubMed  Google Scholar 

  • Stangeland B, Salehian Z (2002) An improved clearing method for GUS assay in Arabidopsis endosperm and seeds. Plant Mol Biol Rep 20:107–114

    Article  Google Scholar 

  • Thiel J, Weier D, Sreenivasulu N, Strickert M, Weichert N, Melzer M, Czauderna T, Wobus U, Weber H, Weschke W (2008) Different hormonal regulation of cellular differentiation and nunction in nucellar projection and endosperm transfer cells: a microdissection-based transcriptome study of young barley grains. Plant Physiol 148:1436–1452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel J, Müller M, Weschke W, Weber H (2009) Amino acid metabolism at the maternal–filial boundary of young barley seeds: a microdissection-based study. Planta 230:205–213

    Article  CAS  PubMed  Google Scholar 

  • Thiel J, Hollmann J, Rutten T, Weber H, Scholz U, Weschke W (2012a) 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells. PLoS One 7:e41867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel J, Riewe D, Rutten T, Melzer M, Friedel S, Bollenbeck F, Weschke W, Weber H (2012b) Differentiation of endosperm transfer cells of barley: a comprehensive analysis at the micro-scale. Plant J 71:639–655

    Article  CAS  PubMed  Google Scholar 

  • Thompson RD, Hueros G, Becker HA, Maitz M (2001) Development and functions of seed transfer cells. Plant Sci 160:775

    Article  CAS  PubMed  Google Scholar 

  • Wang H-H, Wang Z, Wang F, Gu YJ, Liu Z (2012) Development of basal endosperm transfer cells in Sorghum bicolor (L.) Moench and its relationship with caryopsis growth. Protoplasma 249:309–321

    Article  PubMed  Google Scholar 

  • Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J. doi:10.1186/1752-153X-1-7

    PubMed Central  PubMed  Google Scholar 

  • Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35:3375–3382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins 72:547–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yanagisawa S (1997) Dof DNA-binding domains of plant transcription factors contribute to multiple protein–protein interactions. Eur J Biochem 250:403–410

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:281–288

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2001) The transcriptional activation domain of the plant-specific Dof1 factor functions in plant, animal, and yeast cells. Plant Cell Physiol 42:813–822

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45:386–391

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Grain Research and Development Corporation (GRDC) and an International Postgraduate Research Scholarship (IPRS). The authors acknowledge the Australian Centre for Plant Functional Genomics (ACPFG) and Common Wealth Scientific and Industrial Organisation (CSIRO), Plant Industry (PI) at Waite Campus for provision of research facilities. We thank Dr Matthew Tucker and Ms Susan Johnson at CSIRO Plant Industry, Waite Campus and Dr Gwen Mayo for assistance with microscopy, Natalia Bazanova for technical support and Dr Julie Hayes for critically reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Lopato, S., Hrmova, M. et al. Expression patterns and protein structure of a lipid transfer protein END1 from Arabidopsis. Planta 240, 1319–1334 (2014). https://doi.org/10.1007/s00425-014-2155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2155-6

Keywords

Navigation