Skip to main content

Rapid identification of angulata leaf mutations using next-generation sequencing

Abstract

Map-based (positional) cloning has traditionally been the preferred strategy for identifying the causal genes underlying the phenotypes of mutants isolated in forward genetic screens. Massively parallel sequencing technologies are enabling the rapid cloning of genes identified in such screens. We have used a combination of linkage mapping and whole-genome re-sequencing to identify the causal mutations in four loss-of-function angulata (anu) mutants. These mutants were isolated in a screen for mutants with defects in leaf shape and leaf pigmentation. Our results show that the anu1-1, anu4-1, anu9-1 and anu12-1 mutants carry new alleles of the previously characterized SECA2, TRANSLOCON AT THE OUTER MEMBRANE OF CHLOROPLASTS 33 (TOC33), NON-INTRINSIC ABC PROTEIN 14 (NAP14) and CLP PROTEASE PROTEOLYTIC SUBUNIT 1 (CLPR1) genes. Re-sequencing the genomes of fine mapped mutants is a feasible approach that has allowed us to identify a moderate number of candidate mutations, including the one that causes the mutant phenotype, in a nonstandard genetic background. Our results indicate that anu mutations specifically affect plastid-localized proteins involved in diverse processes, such as the movement of peptides through chloroplast membranes (ANU1 and ANU4), metal homeostasis (ANU9) and protein degradation (ANU12).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ANU :

ANGULATA

das:

Days after stratification

EMS:

Ethylmethane sulfonate

NGS:

Next-generation sequencing

References

  1. Ajjawi I, Lu Y, Savage LJ, Bell SM, Last RL (2010) Large-scale reverse genetics in Arabidopsis: case studies from the chloroplast 2010 project. Plant Physiol 152:529–540

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. Alonso-Peral MM, Candela H, del Pozo C, Martínez-Laborda A, Ponce MR, Micol JL (2006) The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis. Development 133:3755–3766

    PubMed  Article  CAS  Google Scholar 

  3. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    PubMed  Article  Google Scholar 

  4. Barrero JM, González-Bayón R, del Pozo JC, Ponce MR, Micol JL (2007) INCURVATA2 encodes the catalytic subunit of DNA polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana. Plant Cell 19:2822–2838

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  5. Bauer J, Chen K, Hiltbunner A, Wehrli E, Eugster M, Schnell D, Kessler F (2000) The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403:203–207

    PubMed  Article  CAS  Google Scholar 

  6. Berná G, Robles P, Micol JL (1999) A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics 152:729–742

    PubMed  PubMed Central  Google Scholar 

  7. Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. Casanova-Sáez R, Candela H, Micol JL (2014a) Combined haploinsufficiency and purifying selection drive retention of RPL36a paralogs in Arabidopsis. Sci Rep 4:4122

    PubMed  Article  PubMed Central  Google Scholar 

  9. Casanova-Sáez R, Mateo-Bonmatí E, Kangasjärvi S, Candela H, Micol JL (2014b) Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development. J Exp Bot 65:2391–2404

    PubMed  Article  PubMed Central  Google Scholar 

  10. Chen X, Liu J, Cheng Y, Jia D (2002) HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development 129:1085–1094

    PubMed  Article  CAS  Google Scholar 

  11. Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase. Plant Physiol 130:1506–1515

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  12. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    PubMed  Article  CAS  Google Scholar 

  13. Cnops G, Jover-Gil S, Peters JL, Neyt P, De Block S, Robles P, Ponce MR, Gerats T, Micol JL, Van Lijsebettens M (2004) The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis. J Exp Bot 55:1529–1539

    PubMed  Article  CAS  Google Scholar 

  14. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  15. Dong H, Fei GL, Wu CY, Wu FQ, Sun YY, Chen MJ, Ren YL, Zhou KN, Cheng ZJ, Wang JL, Jiang L, Zhang X, Guo XP, Lei CL, Su N, Wang H, Wan JM (2013) A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol 162:1867–1880

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. Esteve-Bruna D, Pérez-Pérez JM, Ponce MR, Micol JL (2013) incurvata13, a novel allele of AUXIN RESISTANT6, reveals a specific role for auxin and the SCF complex in Arabidopsis embryogenesis, vascular specification, and leaf flatness. Plant Physiol 161:1303–1320

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  17. Ferrández-Ayela A, Alonso-Peral MM, Sánchez-García AB, Micol-Ponce R, Pérez-Pérez JM, Micol JL, Ponce MR (2013a) Arabidopsis TRANSCURVATA1 encodes NUP58, a component of the nucleopore central channel. PLoS One 8:e67661

    PubMed  Article  PubMed Central  Google Scholar 

  18. Ferrández-Ayela A, Micol-Ponce R, Sánchez-García AB, Alonso-Peral MM, Micol JL, Ponce MR (2013b) Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex component causes pleiotropic developmental defects. PLoS One 8:e80697

    PubMed  Article  PubMed Central  Google Scholar 

  19. Geisler M, Kolukisaoglu HU, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kalman Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B (2003) TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14:4238–4249

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. González-Bayón R, Kinsman EA, Quesada V, Vera A, Robles P, Ponce MR, Pyke KA, Micol JL (2006) Mutations in the RETICULATA gene dramatically alter internal architecture but have little effect on overall organ shape in Arabidopsis leaves. J Exp Bot 57:3019–3031

    PubMed  Article  Google Scholar 

  21. Green KA, Prigge MJ, Katzman RB, Clark SE (2005) CORONA, a member of the class III homeodomain leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis. Plant Cell 17:691–704

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  22. Hellmann H, Hobbie L, Chapman A, Dharmasiri S, Dharmasiri N, del Pozo C, Reinhardt D, Estelle M (2003) Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J 22:3314–3325

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  23. Hobbie L, McGovern M, Hurwitz LR, Pierro A, Liu NY, Bandyopadhyay A, Estelle M (2000) The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 127:23–32

    PubMed  CAS  Google Scholar 

  24. Horiguchi G, Mollá-Morales A, Pérez-Pérez JM, Kojima K, Robles P, Ponce MR, Micol JL, Tsukaya H (2011) Differential contributions of ribosomal protein genes to Arabidopsis thaliana leaf development. Plant J 65:724–736

    PubMed  Article  CAS  Google Scholar 

  25. Hricová A, Quesada V, Micol JL (2006) The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis. Plant Physiol 141:942–956

    PubMed  Article  PubMed Central  Google Scholar 

  26. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  27. Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802

    PubMed  Article  CAS  Google Scholar 

  28. Jarvis P, Chen LJ, Li H, Peto CA, Fankhauser C, Chory J (1998) An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282:100–103

    PubMed  Article  CAS  Google Scholar 

  29. Jover-Gil S, Candela H, Robles P, Aguilera V, Barrero JM, Micol JL, Ponce MR (2012) The microRNA pathway genes AGO1, HEN1 and HYL1 participate in leaf proximal–distal, venation and stomatal patterning in Arabidopsis. Plant Cell Physiol 53:1322–1333

    PubMed  Article  CAS  Google Scholar 

  30. Kamphausen T, Fanghanel J, Neumann D, Schulz B, Rahfeld JU (2002) Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32:263–276

    PubMed  Article  CAS  Google Scholar 

  31. Kim Y, Schumaker KS, Zhu JK (2006) EMS mutagenesis of Arabidopsis. Methods Mol Biol 323:101–103

    PubMed  CAS  Google Scholar 

  32. Kim J, Olinares PD, Oh SH, Ghisaura S, Poliakov A, Ponnala L, van Wijk KJ (2013) Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. Plant Physiol 162:157–179

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  33. Koussevitzky S, Stanne TM, Peto CA, Giap T, Sjogren LL, Zhao Y, Clarke AK, Chory J (2007) An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol Biol 63:85–96

    PubMed  Article  CAS  Google Scholar 

  34. Krothapalli K, Buescher EM, Li X, Brown E, Chapple C, Dilkes BP, Tuinstra MR (2013) Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Genetics 195:309–318

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  35. Kubis S, Patel R, Combe J, Bedard J, Kovacheva S, Lilley K, Biehl A, Leister D, Rios G, Koncz C, Jarvis P (2004) Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell 16:2059–2077

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  36. Laitinen RA, Schneeberger K, Jelly NS, Ossowski S, Weigel D (2010) Identification of a spontaneous frame shift mutation in a nonreference Arabidopsis accession using whole genome sequencing. Plant Physiol 153:652–654

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  37. Leyser HM, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10:403–413

    PubMed  Article  CAS  Google Scholar 

  38. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  39. Li J, Nam KH, Vafeados D, Chory J (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol 127:14–22

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  40. Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:107–118

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  41. Liu Z, Meyerowitz EM (1995) LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development 121:975–991

    PubMed  CAS  Google Scholar 

  42. Liu KH, McCormack M, Sheen J (2012) Targeted parallel sequencing of large genetically-defined genomic regions for identifying mutations in Arabidopsis. Plant Methods 8:12

    PubMed  Article  PubMed Central  Google Scholar 

  43. Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2366

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  44. Lu Y, Savage LJ, Larson MD, Wilkerson CG, Last RL (2011) Chloroplast 2010: a database for large-scale phenotypic screening of Arabidopsis mutants. Plant Physiol 155:1589–1600

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  45. Lukowitz W, Gillmor CS, Scheible WR (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol 123:795–805

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  46. Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282:679–682

    Article  Google Scholar 

  47. Mollá-Morales A, Sarmiento-Manús R, Robles P, Quesada V, Pérez-Pérez JM, González-Bayón R, Hannah MA, Willmitzer L, Ponce MR, Micol JL (2011) Analysis of ven3 and ven6 reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development. Plant J 65:335–345

    PubMed  Article  Google Scholar 

  48. Nelissen H, Fleury D, Bruno L, Robles P, De Veylder L, Traas J, Micol JL, Van Montagu M, Inze D, Van Lijsebettens M (2005) The elongata mutants identify a functional elongator complex in plants with a role in cell proliferation during organ growth. Proc Natl Acad Sci USA 102:7754–7759

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  49. Nordstrom KJ, Albani MC, James GV, Gutjahr C, Hartwig B, Turck F, Paszkowski U, Coupland G, Schneeberger K (2013) Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nat Biotechnol 31:325–330

    PubMed  Article  Google Scholar 

  50. Ochando I, Jover-Gil S, Ripoll JJ, Candela H, Vera A, Ponce MR, Martínez-Laborda A, Micol JL (2006) Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in Arabidopsis. Plant Physiol 141:607–619

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  51. Ohashi-Ito K, Fukuda H (2003) HD-zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol 44:1350–1358

    PubMed  Article  CAS  Google Scholar 

  52. Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  53. Pérez-Pérez JM, Ponce MR, Micol JL (2002) The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev Biol 242:161–173

    PubMed  Article  Google Scholar 

  54. Pérez-Pérez JM, Ponce MR, Micol JL (2004) The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiol 134:101–117

    PubMed  Article  PubMed Central  Google Scholar 

  55. Pérez-Pérez JM, Candela H, Robles P, Quesada V, Ponce MR, Micol JL (2009) Lessons from a search for leaf mutants in Arabidopsis thaliana. Int J Dev Biol 53:1623–1634

    PubMed  Article  Google Scholar 

  56. Pérez-Pérez JM, Candela H, Robles P, López-Torrejón G, del Pozo JC, Micol JL (2010) A role for AUXIN RESISTANT3 in the coordination of leaf growth. Plant Cell Physiol 51:1661–1673

    PubMed  Article  Google Scholar 

  57. Pérez-Pérez JM, Esteve-Bruna D, González-Bayón R, Kangasjarvi S, Caldana C, Hannah MA, Willmitzer L, Ponce MR, Micol JL (2013) Functional redundancy and divergence within the Arabidopsis RETICULATA-RELATED gene family. Plant Physiol 162:589–603

    PubMed  Article  PubMed Central  Google Scholar 

  58. Peters JL, Cnudde F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends Plant Sci 8:484–491

    PubMed  Article  CAS  Google Scholar 

  59. Pinon V, Etchells JP, Rossignol P, Collier SA, Arroyo JM, Martienssen RA, Byrne ME (2008) Three PIGGYBACK genes that specifically influence leaf patterning encode ribosomal proteins. Development 135:1315–1324

    PubMed  Article  CAS  Google Scholar 

  60. Ponce MR, Quesada V, Micol JL (1998) Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome. Plant J 14:497–501

    PubMed  Article  CAS  Google Scholar 

  61. Ponce MR, Robles P, Lozano FM, Brotons MA, Micol JL (2006) Low-resolution mapping of untagged mutations. Methods Mol Biol 323:105–113

    PubMed  CAS  Google Scholar 

  62. Quesada V, Sarmiento-Manús R, González-Bayón R, Hricová A, Pérez-Marcos R, Gracía-Martínez E, Medina-Ruíz L, Leyva-Díaz E, Ponce MR, Micol JL (2011) Arabidopsis RUGOSA2 encodes an mTERF family member required for mitochondrion, chloroplast and leaf development. Plant J 68:738–753

    PubMed  Article  CAS  Google Scholar 

  63. Quesada V, Sarmiento-Manús R, González-Bayón R, Hricová A, Ponce MR, Micol JL (2013) PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis. PLoS One 8:e53378

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  64. Rédei GP, Hirono Y (1964) Linkage studies. Arabidopsis Inf Serv 1:9–10

    Google Scholar 

  65. Robles P, Micol JL (2001) Genome-wide linkage analysis of Arabidopsis genes required for leaf development. Mol Genet Genomics 266:12–19

    PubMed  Article  CAS  Google Scholar 

  66. Rubio-Díaz S, Pérez-Pérez JM, González-Bayón R, Muñoz-Viana R, Borrega N, Mouille G, Hernández-Romero D, Robles P, Hofte H, Ponce MR, Micol JL (2012) Cell expansion-mediated organ growth is affected by mutations in three EXIGUA genes. PLoS One 7:e36500

    PubMed  Article  PubMed Central  Google Scholar 

  67. Savage LJ, Imre KM, Hall DA, Last RL (2013) Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins. PLoS One 8:e73291

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  68. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen JE, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    PubMed  Article  CAS  Google Scholar 

  69. Serrano-Cartagena J, Robles P, Ponce MR, Micol JL (1999) Genetic analysis of leaf form mutants from the Arabidopsis information service collection. Mol Gen Genet 261:725–739

    PubMed  Article  CAS  Google Scholar 

  70. Shimoni-Shor E, Hassidim M, Yuval-Naeh N, Keren N (2010) Disruption of Nap14, a plastid-localized non-intrinsic ABC protein in Arabidopsis thaliana results in the over-accumulation of transition metals and in aberrant chloroplast structures. Plant Cell Environ 33:1029–1038

    PubMed  Article  CAS  Google Scholar 

  71. Skalitzky CA, Martin JR, Harwood JH, Beirne JJ, Adamczyk BJ, Heck GR, Cline K, Fernandez DE (2011) Plastids contain a second sec translocase system with essential functions. Plant Physiol 155:354–369

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  72. Stanga JP, Boonsirichai K, Sedbrook JC, Otegui MS, Masson PH (2009) A role for the TOC complex in Arabidopsis root gravitropism. Plant Physiol 149:1896–1905

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  73. Tabata R, Kamiya T, Shigenobu S, Yamaguchi K, Yamada M, Hasebe M, Fujiwara T, Sawa S (2012) Identification of an EMS-induced causal mutation in a gene required for boron-mediated root development by low-coverage genome re-sequencing in Arabidopsis. Plant Signal Behav 8:18–24

    Google Scholar 

  74. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  75. Uchida N, Sakamoto T, Kurata T, Tasaka M (2011) Identification of EMS-induced causal mutations in a non-reference Arabidopsis thaliana accession by whole genome sequencing. Plant Cell Physiol 52:716–722

    PubMed  Article  CAS  Google Scholar 

  76. Van Minnebruggen A, Neyt P, De Groeve S, Coussens G, Ponce MR, Micol JL, Van Lijsebettens M (2010) The ang3 mutation identified the ribosomal protein gene RPL5B with a role in cell expansion during organ growth. Physiol Plant 138:91–101

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank J.M. Serrano, F.M. Lozano, T. Trujillo, R. Sarmiento-Mañús, D. Navarro, L. Serna, J.M. Sánchez-Larrosa and A. Torregrosa for their excellent technical assistance. Research in the laboratory of J.L.M. is supported by Grants from the Ministerio de Economía y Competitividad of Spain [BFU2011-22825 and CSD2007-00057 (TRANSPLANTA)], the Generalitat Valenciana (PROMETEO/2009/112) and the European Commission [LSHG-CT-2006-037704 (AGRON-OMICS)]. HC is a recipient of a Marie Curie International Reintegration Grant (PIRG03-GA-2008-231073). RCS holds a fellowship from the Ministerio de Economía y Competitividad of Spain (BES-2009-014106). EMB holds a predoctoral fellowship from the Universidad Miguel Hernández.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José Luis Micol.

Additional information

E. Mateo-Bonmatí and R. Casanova-Sáez have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 226 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mateo-Bonmatí, E., Casanova-Sáez, R., Candela, H. et al. Rapid identification of angulata leaf mutations using next-generation sequencing. Planta 240, 1113–1122 (2014). https://doi.org/10.1007/s00425-014-2137-8

Download citation

Keywords

  • Arabidopsis
  • Chloroplast mutants
  • Cloning-by-sequencing
  • NGS
  • SHOREmap
  • Whole-genome sequencing